Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T17:26:52.695Z Has data issue: false hasContentIssue false

The Carleson Measure Problem Between Analytic Morrey Spaces

Published online by Cambridge University Press:  20 November 2018

Jianfei Wang*
Affiliation:
Mathematics, Physics and Information Engineering, ZhejiangNormalUniversity, Jinhua, Zhejiang, 321004, China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to characterize positive measure $\mu$ on the unit disk such that the analytic Morrey space $\mathcal{A}{{\mathcal{L}}_{p,\eta }}$ is boundedly and compactly embedded to the tent space

$$\mathcal{J}_{q,1-\frac{q}{p}\left( 1-\eta \right)}^{\infty }\left( \mu \right)$$

for the case $1\,\le \,q\,\le \,p\,<\,\infty$ respectively. As an application, these results are used to establish the boundedness and compactness of integral operators and multipliers between analytic Morrey spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Aleman, A. and Cima, J. A., An integral operator on HP and Hardy's inequality. J. Anal. Math. 85(2001), 157176. http://dx.doi.Org/10.1007/BF02788078 Google Scholar
[2] Carleson, L., Interpolations by bounded analytic functions and the corona problem. Ann. of Math. 76(1962), 547559. http://dx.doi.Org/10.2307/1970375 Google Scholar
[3] Cascante, C., Fabrega, J., and Ortega, J. M., The corona theorem in weighted Hardy and Morrey spaces. Ann. Scuola. Norm. Super. Pisa. Cl. Sci. 13(2014), no. 3, 579607.Google Scholar
[4] Fefferman, C. and Stein, E. M., Hp spaces of several variables. Acta. Math. 129(1972), no. 3-4, 137193. http://dx.doi.Org/10.1007/BF02392215 Google Scholar
[5] Kufner, A., O. John and Fcik, S., Function spaces. Monographs and textbooks on mechanics of solids and fluids; mechanics: analysis. Noordhoff International Publishing, Leyden, 1977.Google Scholar
[6] Li, P., Liu, J., and Lou, Z., Integral operators on analytic Morrey spaces. Sci China Math. 57(2014), no. 9, 19611974. http://dx.doi.Org/1 0.1007/s11425-014-4811 -5 Google Scholar
[7] Liu, J. and Lou, Z., Carleson measure for analytic Morrey spaces. Nonlinear Anal. 125(2015), 423432. http://dx.doi.Org/10.1016/j.na.2O15.05.016 Google Scholar
[8] Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43(1938), no. 1, 126166. http://dx.doi.Org/10.1090/S0002-9947-1938-1501936-8 Google Scholar
[9] Pommerenke, C., Schlichte Funktionen und analytische Funktionen von beschrankter mittlerer Oszillation. Comment. Math. Helv. 52(1978), no. 4, 591602. http://dx.doi.Org/10.1007/BF02567392 Google Scholar
[10] Siskakis, A. G., Composition semigroups and the Cesáro operator on 3C. J. London Math. Soc. 36(1987), no. 1, 153164. http://dx.doi.Org/10.1112/jlms/s2-36.1.153 Google Scholar
[11] Tjani, M., Compact composition operators on Besove spaces. Trans. Amer. Math. Soc. 355(2003), no. 11, 46834698. http://dx.doi.Org/10.1090/S0002-9947-03-03354-3 Google Scholar
[12] Wang, J. and J. Xiao , Analytic Campanato spaces by functionals and operators. J. Geom. Anal. http://dx.doi.Org/10.1007/s1222O-O15-9658-7 Google Scholar
[13] Wu, Z., A new characterization for Carleson measures and some applications. Integral Equations Operator Theory 71(2011), no. 2,161-180. http://dx.doi.Org/10.1007/s00020-011-1892-1 Google Scholar
[14] Wu, Z. and Xie, C., Q spaces and Morrey spaces. J. Funct. Anal. 201(2003), no. 1, 282297. http://dx.doi.Org/10.101 6/SOO22-1236(03)00020-X Google Scholar
[15] Xiao, J., Geometric Qp functions. Frontiers in Mathematics, Birkhauser-Verlag, Basel, 2006.Google Scholar
[16] Xiao, J., The Qp Carleson measure problem. Adv. Math. 217(2008), no. 5, 20752088. http://dx.doi.Org/10.1016/j.aim.2007.08.015 Google Scholar
[17] Xiao, J. and W Xu, Composition operators between analytic Campanato space. J. Geom. Anal. 24(2014), no. 2, 649666. http://dx.doi.Org/10.1007/s12220-012-9349-6 Google Scholar
[18] Xiao, J. and Yuan, C., Analytic Campanato spaces and their compositions. Indiana. Univ. Math. J. 64(2015), no. 4, 10011025. http://dx.doi.Org/10.1512/iumj.2015.64.5575 Google Scholar
[19] Zhu, K., Operator theory in function spaces. Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007. http://dx.doi.Org/!0.1090/surv/138 Google Scholar