Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T14:25:42.675Z Has data issue: false hasContentIssue false

Cantor–Bernstein Sextuples for Banach Spaces

Published online by Cambridge University Press:  20 November 2018

Elói M. Galego*
Affiliation:
Department of Mathematics - IME, University of São Paulo, São Paulo 05508-090, Brazil e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $X$ and $Y$ be Banach spaces isomorphic to complemented subspaces of each other with supplements $A$ and $B$. In 1996, W. T. Gowers solved the Schroeder–Bernstein (or Cantor–Bernstein) problem for Banach spaces by showing that $X$ is not necessarily isomorphic to $Y$. In this paper, we obtain a necessary and sufficient condition on the sextuples $\left( p,\,q,\,r,\,s,\,u,\,v \right)$ in $\mathbb{N}$ with $p\,+\,q\,\ge \,1$, $r+s\ge 1$ and $u,\,v\,\in \,{{\mathbb{N}}^{*}}$, to provide that $X$ is isomorphic to $Y$, whenever these spaces satisfy the following decomposition scheme

$${{A}^{u}}\,\sim \,{{X}^{p}}\,\oplus \,{{Y}^{q}},\,{{B}^{v}}\,\sim \,{{X}^{r}}\,\oplus \,{{Y}^{s}}.$$

Namely, $\Phi \,=\,\left( p\,-\,u \right)\left( s\,-\,v \right)-\left( q\,+\,u \right)\left( r\,+\,v \right)$ is different from zero and $\Phi $ divides $p\,+\,q$ and $r\,+\,s$. These sextuples are called Cantor–Bernstein sextuples for Banach spaces. The simplest case $\left( 1,0,0,1,1,1 \right)$ indicates the well-known Pełczyński's decomposition method in Banach space. On the other hand, by interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder– Bernstein problem become evident.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Casazza, P. G., The Schroeder-Bernstein property for Banach spaces. In: Banach Space Theory. Contemp. Math. 85. American Mathematical Society, Providence, RI, 1989, pp. 6177.Google Scholar
[2] Ferenczi, V. and Galego, E. M., Some results on the Schroeder-Bernstein property for separable Banach spaces. Canad. J. Math. 59(2007), no. 11 6384.Google Scholar
[3] Galego, E. M., On solutions to the Schroeder-Bernstein problem for Banach spaces. Arch. Math. (Basel) 79(2002), no. 4, 299307.Google Scholar
[4] Galego, E. M., Banach spaces complemented in each other without isomorphic finite sums. Bull. Pol. Acad. Sci. Math. 50(2002), no. 1, 19.Google Scholar
[5] Galego, E. M., The Schroeder-Bernstein index for Banach spaces. Studia Math. 164(2004), no. 1, 2938. doi:10.4064/sm164-1-2Google Scholar
[6] Galego, E. M., On pairs of Banach spaces which are isomorphic to complemented subspaces of each other. Colloq. Math. 101(2004), no. 2, 279287. doi:10.4064/cm101-2-10Google Scholar
[7] Galego, E. M., A remark on non-separable solutions to the Schroeder-Bernstein problem for Banach spaces. Results Math. 47(2005), no. 1–2, 5560.Google Scholar
[8] Galego, E. M., Schroeder-Bernstein quintuples for Banach spaces. Bull. Pol. Acad. Sci. Math. 54(2006), no. 2, 113124. doi:10.4064/ba54-2-3Google Scholar
[9] Galego, E. M., A note on extensions of Pełczyński's decomposition method in Banach spaces. Studia Math. 180(2007), no. 1, 2740. doi:10.4064/sm180-1-3Google Scholar
[10] Galego, E. M., Some Schroeder-Bernstein type theorems for Banach spaces. J. Math. Anal. Appl. 338(2008), no. 1, 653661. doi:10.1016/j.jmaa.2007.04.078Google Scholar
[11] Gowers, W. T., The unconditional basic sequence problem. J. Amer. Math. Soc. 6(1993), 851874. doi:10.2307/2152743Google Scholar
[12] Gowers, W. T., A solution to the Schroeder-Bernstein problem for Banach spaces. Bull. London Math. Soc. 28(1996), no. 3, 297304. doi:10.1112/blms/28.3.297Google Scholar
[13] Gowers, W. T., and Maurey, B., Banach spaces with small spaces of operators. Math. Ann. 307(1997), no. 4, 543568. doi:10.1007/s002080050050Google Scholar