Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T01:35:59.867Z Has data issue: false hasContentIssue false

Canonical Vector Heights on Algebraic $\text{K}3$ Surfaces with Picard Number Two

Published online by Cambridge University Press:  20 November 2018

Arthur Baragar*
Affiliation:
University of Nevada Las Vegas Las Vegas, NV 89154-4020 USA, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $V$ be an algebraic $\text{K}3$ surface defined over a number field $K$. Suppose $V$ has Picard number two and an infinite group of automorphisms $\mathcal{A}\,=\,\text{Aut(}V/K\text{)}$. In this paper, we introduce the notion of a vector height $\mathbf{h}:\,V\,\to \,\text{Pic(}V\text{)}\,\otimes \,\mathbb{R}$ and show the existence of a canonical vector height $\mathbf{\hat{h}}$ with the following properties:

$$\widehat{\mathbf{h}}\,\left( \sigma P \right)\,=\,{{\sigma }_{*}}\widehat{\mathbf{h}}\left( P \right)$$
$${{h}_{D}}(P)\,=\,\mathbf{\hat{h}}(P)\,\cdot \,D\,+\,O(1),$$

where $\sigma \,\in \,\mathcal{A},\,{{\sigma }_{*}}$ is the pushforward of $\sigma $ (the pullback of ${{\sigma }^{-1}}$), and ${{h}_{D}}$ is a Weil height associated to the divisor $D$. The bounded function implied by the $O(1)$ does not depend on $P$. This allows us to attack some arithmetic problems. For example, we show that the number of rational points with bounded logarithmic height in an $\mathcal{A}$-orbit satisfies

$${{N}_{\mathcal{A}(P)}}(t,\,D)\,=\,\#\{Q\,\in \,\mathcal{A}(P)\,:\,{{h}_{D}}(Q)\,<\,t\}\,=\,\frac{\mu (P)}{s\,\log \,\omega }\,\log t\,+\,O\left( \log \left( \mathbf{\hat{h}}(P)\,\cdot \,D\,+\,2 \right) \right).$$

Here, $\mu (P)$ is a nonnegative integer, $s$ is a positive integer, and $\omega $ is a real quadratic fundamental unit.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2003

References

[Ba] Baragar, A., Rational points on K3 surfaces in Math. Ann. 305 (1996), 541–558.Google Scholar
[Bi] Billard, H., Propriétés arithmétiques d'une famille de surfaces K3. Compositio Math. 108 (1997), 247275.Google Scholar
[C-S1] Call, G. S. and Silverman, J. H., Canonical heights on varieties with morphisms. Compositio Math. 89 (1993), 163205.Google Scholar
[C-S2] Call, G. S. and Silverman, J. H., Computing the canonical height on K3 surfaces. Math. Comp. (213) 65 (1996), 259290.Google Scholar
[L] Lang, S., Number Theory III. Springer-Verlag, New York, 1991.Google Scholar
[Ni] Nikulin, V. V., K3 surfaces with interesting groups of automorphisms. J. Math. Sci. (1) 95 (1999), 20282048.Google Scholar
[No] Northcott, D. G., Periodic points on an algebraic variety. Ann. of Math. (2) 51 (1950), 167177.Google Scholar
[S] Silverman, J. H., Rational points on K3 surfaces: A new canonical height. Invent.Math. 105 (1991), 347373.Google Scholar
[PS-S] Pyatetski-Shapiro, I. and Shafarevich, I., A Torelli theorem for algebraic surfaces of type K3. Isv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530572.Google Scholar
[W] Wang, L., Rational points and canonical heights on K3-surfaces in . Contemp.Math. 186 (1995), 273–289.Google Scholar