Article contents
Cancellation of two classes of dirichlet coefficients over Beatty sequences
Published online by Cambridge University Press: 20 April 2021
Abstract
Let
$\pi $
be an automorphic irreducible cuspidal representation of
$\mathrm{GL}_{m}$
over
$\mathbb {Q}$
. Denoted by
$\lambda _{\pi }(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi )$
associated with
$\pi $
. Let
$\pi _{1}$
be an automorphic irreducible cuspidal representation of
$\mathrm{SL}(2,\mathbb {Z})$
. Denoted by
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
the nth coefficient in the Dirichlet series expansion of
$L(s,\pi _{1}\times \pi _{1})$
associated with
$\pi _{1}\times \pi _{1}$
. In this paper, we study the cancellations of
$\lambda _{\pi }(n)$
and
$\lambda _{\pi _{1}\times \pi _{1}}(n)$
over Beatty sequences.
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2021
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline297.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline298.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline299.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline300.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline301.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline302.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline303.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline304.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline305.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline306.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline307.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline308.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220320114921303-0088:S0008439521000242:S0008439521000242_inline309.png?pub-status=live)
- 1
- Cited by