Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T04:14:51.120Z Has data issue: false hasContentIssue false

C*-algebras where every element is a limit of products of positive elements

Published online by Cambridge University Press:  11 August 2021

Leonel Robert*
Affiliation:
Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA70506, USA

Abstract

We obtain a characterization of the unital C*-algebras with the property that every element is a limit of products of positive elements, thereby answering a question of Murphy and Phillips.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de la Harpe, P. and Skandalis, G., Déterminant associé à une trace sur une algébre de Banach . Ann. Inst. Fourier (Grenoble). 34(1984), 241260.CrossRefGoogle Scholar
Gong, G., Lin, H., and Xue, Y., Determinant rank of C*-algebras . Pacific J. Math. 274(2015), 405436.CrossRefGoogle Scholar
Murphy, G. J. and Phillips, N. C., C*-algebras with the approximate positive factorization property . Trans. Amer. Math. Soc. 348(1996), 22912306.10.1090/S0002-9947-96-01657-1CrossRefGoogle Scholar
Quinn, T., Factorization in C*-algebras: products of positive operators. Ph.D. thesis, Dalhousie University, Halifax, and ProQuest LLC, Ann Arbor, MI, 1992.Google Scholar
Rieffel, M. A., Dimension and stable rank in the K-theory of C*-algebras . Proc. Lond. Math. Soc. (3). 46(1983), 301333.10.1112/plms/s3-46.2.301CrossRefGoogle Scholar
Rieffel, M. A., The homotopy groups of the unitary groups of noncommutative tori . J. Operator Theory. 17(1987), 237254.Google Scholar
Robert, L., Normal subgroups of invertibles and of unitaries in a C*-algebra . J. Reine Angew. Math. 756(2019), 285319.10.1515/crelle-2017-0020CrossRefGoogle Scholar
Thomsen, K., Traces, unitary characters and crossed products by Z . Publ. Res. Inst. Math. Sci. 31(1995), 10111029.10.2977/prims/1195163594CrossRefGoogle Scholar