Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:52:29.340Z Has data issue: false hasContentIssue false

Averaging Operators and Martingale Inequalities in Rearrangement Invariant Function Spaces

Published online by Cambridge University Press:  20 November 2018

Masato Kikuchi*
Affiliation:
Department of Mathematics Toyama University 3190 Gofuku Toyama 930-8555 Japan, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall study some connection between averaging operators and martingale inequalities in rearrangement invariant function spaces. In Section 2 the equivalence between Shimogaki’s theorem and some martingale inequalities will be established, and in Section 3 the equivalence between Boyd’s theorem and martingale inequalities with change of probability measure will be established.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Antipa, A., Doob's inequality for rearrangement-invariant function spaces. Rev. Roumaine Math. Pures Appl. 35 (1990), 101108.Google Scholar
[2] Bennett, C. and Sharpley, R., Interpolation of operators. Academic Press, New York, 1988.Google Scholar
[3] Bonami, A. and Lépingle, D., Fonction maximale et variation quadratique des martingales en présence d’un poids. In: Séminaire de Probabilités, Lecture Notes in Math. 721, Springer-Verlag, New York, 1979, 294306.Google Scholar
[4] Boyd, D. W., The spectral radius of averaging operators. Pacific J. Math. 24 (1968), 1928.Google Scholar
[5] Boyd, D. W., Indices of function spaces and their relationship to interpolation. Canad. J. Math. 21 (1969), 12451254.Google Scholar
[6] Chong, K. M. and Rice, N. M., Equimeasurable rearrangements of functions. Queen's Papers in Pure and Appl. Math. 28(1971).Google Scholar
[7] Dellacherie, C. and Meyer, P. A., Probabilités et potentiel, Chapitres I à IV. Hermann, Paris, 1976.Google Scholar
[8] Dellacherie, C. and Meyer, P. A., Probabilités et potentiel, Chapitres V à VIII. Hermann, Paris, 1980.Google Scholar
[9] Doléans-Dade, C. and Meyer, P. A., Inégalités de normes avec poids. In: Séminaire de Probabilités, Lecture Notes in Math. 721, Springer-Verlag, New York, 1979, 313331.Google Scholar
[10] Izumisawa, M. and Kazamaki, N., Weighted norm inequalities for martingales. Tôhoku Math. J. 29 (1977), 115124.Google Scholar
[11] Johnson, W. B. and Schechtman, G., Martingale inequalities in rearrangement invariant function spaces. Israel J. Math. 64 (1988), 267275.Google Scholar
[12] Kazamaki, N., Continuous exponential martingales and BMO. Lecture Notes in Math. 1579, Springer-Verlag, New York, 1994.Google Scholar
[13] Luxemburg, W. A. J., Rearrangement-invariant Banach function spaces. In: Proceedings of the symposium in analysis, Queen's Papers in Pure and Appl. Math. 10 (1967), 83144.Google Scholar
[14] Meyer, P. A., Un cours sur les intégrales stochastiques. In: Séminaire de Probabilités, Lecture Notes in Math. 511 (1976), Springer-Verlag, New York, 245400.Google Scholar
[15] Novikov, I. Ya., Martingale inequalities in rearrangement invariant function spaces. In: Function spaces, Teubner-Texte Math. 120, Teubner, Stuttgart, 1991, 120127.Google Scholar
[16] Sekiguchi, T., BMO-martingales and inequalities. Tôhoku Math. J. 31 (1979), 355358.Google Scholar
[17] Shimogaki, T., Hardy-Littlewood majorants in function spaces. J.Math. Soc. Japan 17 (1965), 365373.Google Scholar
[18] Tsuchikura, T., A remark to weighted means of martingales. Seminar on real analysis 1976, Hachiooji (in Japanese).Google Scholar
[19] Uchiyama, A., Weight functions on probability spaces. Tôhoku Math. J. 30 (1978), 463470.Google Scholar