Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T01:15:01.608Z Has data issue: false hasContentIssue false

Approximation of a Function and its Derivatives by Entire Functions

Published online by Cambridge University Press:  20 November 2018

Paul M. Gauthier
Affiliation:
Département de mathématiques et de statistique, Université de Montréal, CP-6128 Centreville, Montréal, H3C3J7 e-mail: [email protected] e-mail: [email protected]
Julie Kienzle
Affiliation:
Département de mathématiques et de statistique, Université de Montréal, CP-6128 Centreville, Montréal, H3C3J7 e-mail: [email protected] e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A simple proof is given for the fact that for $m$ a non-negative integer, a function $f\,\in \,{{C}^{(m)}}\,(\mathbb{R})$, and an arbitrary positive continuous function $\in$, there is an entire function $g$ such that $\left| {{g}^{(i)}}(x)\,-\,{{f}^{(i)}}(x) \right|\,<\,\in (x)$, for all $x\,\in \,\mathbb{R}$ and for each $i\,=\,0,\,1\,.\,.\,.\,,\,m$. We also consider the situation where $\mathbb{R}$ is replaced by an open interval.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Carleman, T., Sur un théorème de Weierstrafi. Arkiv for Mat. B 20(1927), no. 4,1-5.Google Scholar
[2] Deutsch, F., Simultaneous interpolation and approximation in topological linear spaces. SIAM J. Appl. Math. 14(1966), 11801190. http://dx.doi.Org/10.1137/0114095 Google Scholar
[3] Frih, E. M. and Gauthier, P. M., Approximation of a function and its derivatives by entire functions of several variables. Canad. Math. Bull. 31(1988), no. 4, 495499. http://dx.doi.Org/10.4153/CMB-1988-071-1 Google Scholar
[4] Gaier, D., Lectures on complex approximation. Birkhâuser Boston, Inc., Boston, MA, 1987.Google Scholar
[5] Gauthier, P., Tangential approximation by entire functions and functions holomorphic in a disc. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 4(1969), no. 5, 319326.Google Scholar
[6] Hoischen, L., Approximation und Interpolation durch ganze Funktionen. J. Approximation Theory 15(1975), no. 2, 116123. http://dx.doi.Org/10.101 6/0021 -9045(75)90121-5 Google Scholar
[7] Johanis, M., A remark on the approximation theorems of Whitney and Carleman-Scheinberg. Comment. Math. Univ. Carolin. 56(2015), 16. http://dx.doi.Org/10.14712/1213-7243.015.101 Google Scholar
[8] Nersesjan, A. A., Carleman sets. (Russian) Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6(1971), no. 6, 465471.Google Scholar
[9] Scheinberg, S., Uniform approximation by entire functions. J. Analyse Math. 29(1976), 1618. http://dx.doi.Org/10.1007/BF02789974 Google Scholar
[10] Whitney, H., Analytic extensions of differentiate functions defined in dosed sets. Trans. Amer. Math. Soc. 36(1934), no. 1, 6389. http://dx.doi.Org/10.1090/S0002-9947-1934-1501735-3 Google Scholar