Published online by Cambridge University Press: 20 November 2018
Let G be an undirected graph, without loops or multiple edges. An automorphism of G is a permutation of the vertices of G that preserves adjacency. G is vertex transitive if, given any two vertices of G, there is an automorphism of the graph that maps one to the other. Similarly, G is edge transitive if for any two edges (a, b) and (c, d) of G there exists an automorphism f of G such that {c, d} = {f(a), f(b)}. A graph is regular of degree d if each vertex belongs to exactly d edges.
The graph described in this note was discovered by Dr. Marion C. Gray in 1932. The author has independently rediscovered it and believes that it here appears in print for the first time.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.