No CrossRef data available.
Article contents
Admissibility of Local Systems for some Classes of Line Arrangements
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $\mathcal{A}$ be a line arrangement in the complex projective plane ${{\mathbb{P}}^{2}}$ and let $M$ be its complement. A rank one local system $\mathcal{L}$ on $M$ is admissible if, roughly speaking, the cohomology groups ${{H}^{m}}\left( M,\,\mathcal{L} \right)$ can be computed directly from the cohomology algebra ${{H}^{*}}\left( M,\,\mathbb{C} \right)$. In this work, we give a sufficient condition for the admissibility of all rank one local systems on $M$. As a result, we obtain some properties of the characteristic variety ${{\mathcal{V}}_{1}}\left( M \right)$ and the Resonance variety ${{\mathcal{R}}_{1}}\left( M \right)$.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2014