Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T18:09:20.008Z Has data issue: false hasContentIssue false

Acute Triangulation of a Triangle in a General Setting

Published online by Cambridge University Press:  20 November 2018

Victor Pambuccian*
Affiliation:
Division of Mathematical and Natural Sciences, Arizona State University-West Campus, Phoenix, AZ, U.S.A. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that, in ordered plane geometries endowed with a very weak notion of orthogonality, one can always triangulate any triangle into seven acute triangles, and, in case the given triangle is not acute, into no fewer than seven.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Bachmann, F., Aufbau der Geometrie aus dem Spiegelungsbegriff. Zweite ergãnzte Auflage. Die Grundlehren der mathematischenWissenschaften, 96, Springer-Verlag, Berlin, 1973.Google Scholar
[2] Bachmann, O., Zur spiegelungsgeometrischen Begründung von Geometrien. Geom. Dedicata 5(1976), no. 4, 497516.Google Scholar
[3] Burago, Ju. D., Zalgaller, V. A., Polyhedral embedding of a net. (Russian) Vestnik Leningrad Univ. 15(1960), no. 7, 6680.Google Scholar
[4] Coppel, W. A., Foundations of convex geometry. Australian Mathematical Society Lecture Series, 12, Cambridge University Press, Cambridge, 1998.Google Scholar
[5] Düvelmeyer, N., A new characterization of Radon curves via angular bisectors. J. Geom. 80(2004), no. 1–2, 7581. doi:10.1007/s00022-003-1717-8Google Scholar
[6] Düvelmeyer, N., Angle measures and bisectors in Minkowski planes. Canad. Math. Bull. 48(2005), no. 4, 523534.Google Scholar
[7] Gardner, M., Mathematical games. A fifth collection of “brain-teasers”. Sci. Amer. 202(1960), no. 2, 150154.Google Scholar
[8] Gardner, M., Mathematical games. The games and puzzles of Lewis Carroll, and the answers to February's problems. Sci. Amer. 202(1960), no. 3, 172182.Google Scholar
[9] Goldberg, M. and Manheimer, W., Elementary problems and solutions: solutions: E1406. Amer. Math. Monthly 67(1960), no. 9, 923. doi:10.2307/2309476Google Scholar
[10] Hangan, T., Itoh, J.-i., and Zamfirescu, T., Acute triangulations. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 43(91)(2000), no. 3–4, 279285.Google Scholar
[11] Hilbert, D., über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck, Proc. London Math. Soc., 35, 50–68 (1903); also In: Hilbert, D., Grundlagen der Geometrie, Anhang II, 14. Auflage. Teubner Verlag, Stuttgart, 1999, pp. 88107.Google Scholar
[12] Itoh, J.-I. and Zamfirescu, T., Acute triangulations of triangles on the sphere. IV Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II(2002), 5964.Google Scholar
[13] Itoh, J.-I. and Zamfirescu, T., Acute triangulations of the regular icosahedral surface. Discrete Comput. Geom. 31(2004), no. 2, 197206. doi:10.1007/s00454-003-0805-8Google Scholar
[14] Itoh, J.-I. and Zamfirescu, T., Acute triangulations of the regular dodecahedral surface. European J. Combin. 28(2007), no. 4, 10721086. doi:10.1016/j.ejc.2006.04.008Google Scholar
[15] Kaiser, H., Zerlegungen euklidischer und nichteuklidischer Polygone in spitzwinklige Dreiecke. Rad. Jugoslav. Akad. Znan. Umjet. 444(1989), 7586.Google Scholar
[16] Kusak, E., Desarguesian Euclidean planes and their axiom system. Bull. Polish Acad. Sci. Math. 35(1987), no. 1–2, 8792.Google Scholar
[17] Lettrich, J., The orthogonality in affine parallel structure. Math. Slovaca 43(1993), no. 1, 4568.Google Scholar
[18] Maehara, H., On acute triangulations of quadrilaterals. In: Discrete and computational geometry (Tokyo, 2000), Lecture Notes in Computer Science, 2098, Springer, Berlin, 2001, pp. 237243.Google Scholar
[19] Maehara, H., Acute triangulations of polygons. European J. Combin. 23(2002), no. 1, 4555. doi:10.1006/eujc.2001.0531Google Scholar
[20] Martini, H. and Swanepoel, K. J., Antinorms and Radon curves. Aequationes Math. 72(2006), no. 1–2, 110138. doi:10.1007/s00010-006-2825-yGoogle Scholar
[21] Naumann, H., Eine affine Rechtwinkelgeometrie. Math. Ann. 131(1956), 1727. doi:10.1007/BF01354663Google Scholar
[22] Naumann, H. and Reidemeister, K., Über Schließungssätze der Rechtwinkelgeometrie. Abh. Math. Sem. Univ. Hamburg 21(1957), 112. doi:10.1007/BF02941920Google Scholar
[23] Pejas, W., Eine algebraische Beschreibung der angeordneten Ebenen mit nichteuklidischer Metrik. Math. Z. 83(1964), 434457. doi:10.1007/BF01111004Google Scholar
[24] Schütte, K., Die Winkelmetrik in der affin-orthogonalen Ebene. Math. Ann. 130(1955), 183195. doi:10.1007/BF01343347Google Scholar
[25] Schütte, K., Gruppentheoretisches Axiomensystem einer verallgemeinerten euklidischen Geometrie. Math. Ann. 132(1956), 4362. doi:10.1007/BF01343330Google Scholar
[26] Schütte, K., Schließungssätze für orthogonale Abbildungen euklidischer Ebenen. Math. Ann. 132(1956), 106120. doi:10.1007/BF01452321Google Scholar
[27] Thompson, A. C., Minkowski geometry. Encyclopedia of Mathematics and its Applications, 63, Cambridge University Press, Cambridge, 1996.Google Scholar
[28] Veblen, O., A system of axioms for geometry. Trans. Amer. Math. Soc., 5(1904), no. 3, 343384. doi:10.2307/1986462Google Scholar
[29] Yuan, L., Acute triangulations of polygons. Discrete Comput. Geom. 34(2005), no. 4, 697706. doi:10.1007/s00454-005-1188-9Google Scholar
[30] Yuan, L. and Zamfirescu, T., Acute triangulations of flat Möbius strips. Discrete Comput. Geom. 37(2007), no. 4, 671676. doi:10.1007/s00454-007-1312-0Google Scholar
[31] Zamfirescu, C., Acute triangulations of the double triangle. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95)(2004), no. 3–4, 189193.Google Scholar