Article contents
On Knörrer Periodicity for Quadric Hypersurfaces in Skew Projective Spaces
Published online by Cambridge University Press: 03 December 2018
Abstract
We study the structure of the stable category $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ of graded maximal Cohen–Macaulay module over $S/(f)$ where $S$ is a graded ($\pm 1$)-skew polynomial algebra in $n$ variables of degree 1, and $f=x_{1}^{2}+\cdots +x_{n}^{2}$. If $S$ is commutative, then the structure of $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ is well known by Knörrer’s periodicity theorem. In this paper, we prove that if $n\leqslant 5$, then the structure of $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ is determined by the number of irreducible components of the point scheme of $S$ which are isomorphic to $\mathbb{P}^{1}$.
Keywords
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2018
Footnotes
The author was supported by JSPS Grant-in-Aid for Early-Career Scientists 18K13381.
References
- 3
- Cited by