Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:35:17.432Z Has data issue: false hasContentIssue false

On Knörrer Periodicity for Quadric Hypersurfaces in Skew Projective Spaces

Published online by Cambridge University Press:  03 December 2018

Kenta Ueyama*
Affiliation:
Department of Mathematics, Faculty of Education, Hirosaki University, 1 Bunkyocho, Hirosaki, Aomori 036-8560, Japan Email: [email protected]

Abstract

We study the structure of the stable category $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ of graded maximal Cohen–Macaulay module over $S/(f)$ where $S$ is a graded ($\pm 1$)-skew polynomial algebra in $n$ variables of degree 1, and $f=x_{1}^{2}+\cdots +x_{n}^{2}$. If $S$ is commutative, then the structure of $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ is well known by Knörrer’s periodicity theorem. In this paper, we prove that if $n\leqslant 5$, then the structure of $\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}(S/(f))$ is determined by the number of irreducible components of the point scheme of $S$ which are isomorphic to $\mathbb{P}^{1}$.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported by JSPS Grant-in-Aid for Early-Career Scientists 18K13381.

References

Artin, M., Tate, J., and Van den Bergh, M., Some algebras associated to automorphisms of elliptic curves . In: The Grothendieck Festschrift, vol. I , Prog. Math., 86, Birkhäuser, Boston, MA, 1990, pp. 3385.Google Scholar
Belmans, P., De Laet, K., and Le Bruyn, L., The point variety of quantum polynomial rings . J. Algebra 463(2016), 1022. https://doi.org/10.1016/j.jalgebra.2016.06.013 Google Scholar
Buchweitz, R.-O., Eisenbud, D., and Herzog, J., Cohen–Macaulay modules on quadrics . In: Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) , Lecture Notes in Math., 1273, Springer, Berlin, 1987, pp. 58116. https://doi.org/10.1007/BFb0078838 Google Scholar
Jørgensen, P., Local cohomology for non-commutative graded algebras . Comm. Algebra 25(1997), no. 2, 575591. https://doi.org/10.1080/00927879708825875 Google Scholar
Knörrer, H., Cohen–Macaulay modules on hypersurface singularities. I . Invent. Math. 88(1987), 153164. https://doi.org/10.1007/BF01405095 Google Scholar
Mori, I., Co-point modules over Koszul algebras . J. London Math. Soc. (2) 74(2006), no. 3, 639656. https://doi.org/10.1112/S002461070602326X Google Scholar
Smith, S. P., Some finite-dimensional algebras related to elliptic curves . In: Representation theory of algebras and related topics (Mexico City, 1994) , CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996, pp. 315348.Google Scholar
Smith, S. P. and Van den Bergh, M., Noncommutative quadric surfaces . J. Noncommut. Geom. 7(2013), no. 3, 817856. https://doi.org/10.4171/JNCG/136 Google Scholar
Vitoria, J., Equivalences for noncommutative projective spaces. 2011. arxiv:1001.4400v3 Google Scholar