Hostname: page-component-6bf8c574d5-xtvcr Total loading time: 0 Render date: 2025-02-21T20:23:41.887Z Has data issue: false hasContentIssue false

On boundary-non-preserving mappings with Poletsky inequality

Published online by Cambridge University Press:  03 February 2025

Victoria Desyatka
Affiliation:
Department of Mathematical Analysis, Business Analysis and Statistics of Zhytomyr Ivan Franko State University, 40 Velyka Berdychivs’ka Str., 10 008 Zhytomyr, Ukraine e-mail: [email protected]
Evgeny Sevost’yanov*
Affiliation:
Department of Mathematical Analysis, Business Analysis and Statistics of Zhytomyr Ivan Franko State University, 40 Velyka Berdychivs’ka Str., 10 008 Zhytomyr, Ukraine and Department of Function Theory of Institute of Applied Mathematics and Mechanics of NAS of Ukraine, 19 Henerala Batyuka Str., 84 116 Slov’yans’k, Ukraine

Abstract

The manuscript is devoted to the boundary behavior of mappings with bounded and finite distortion. We consider mappings of domains of the Euclidean space that satisfy weighted Poletsky inequality. Assume that, the definition domain is finitely connected on its boundary and, in addition, on the set of all points which are pre-images of the cluster set of this boundary. Then the specified mappings have a continuous boundary extension provided that the majorant in the Poletsky inequality satisfies some integral divergence condition, or has a finite mean oscillation at every boundary point.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cristea, M., Open discrete mappings having local $AC{L}^n$ inverses. Complex Var. Elliptic Equ. 55(2010), nos. 1–3, 6190.Google Scholar
Federer, H., Geometric measure theory, Springer, Berlin, 1969.Google Scholar
Golberg, A., Salimov, R., and Sevost’yanov, E., Normal families of discrete open mappings with controlled $p$ -module . Contemp. Math. 667(2016), 83103.Google Scholar
Gutlyanskii, V., Ryazanov, V., Srebro, U., and Yakubov, E., The Beltrami equation: A geometric approach, Developments in Mathematics, 26, Springer, New York, 2012, xiv+301 pp.Google Scholar
Ignat’ev, A. and Ryazanov, V., To the theory of the boundary behavior of space mappings . Ukr. Math. Bull. 3(2006), no. 2, 189201.Google Scholar
Kuratowski, K., Topology. vol. 2, Academic Press, New York, 1968.Google Scholar
Koskela, P. and Martio, O., Removability theorems for quasiregulat mappings . Ann. Acad. Sci. Fenn. Ser. A I. Math. 15(1990), 381399.Google Scholar
Martio, O., Rickman, S., and Väisälä, J., Distortion and singularities of quasiregular mappings . Acad. Sci. Fenn. Ser. A1(1970), no. 465, 113.Google Scholar
Martio, O., Rickman, S., and Väisälä, J., Topological and metric properties of quasiregular mappings . Acad. Sci. Fenn. Ser. A1(1971), no. 488, 131.Google Scholar
Martio, O., Ryazanov, V., Srebro, U., and Yakubov, E., On $Q$ -homeomorphisms . Ann. Acad. Sci. Fenn. Ser. A1 30(2005), no. 1, 4969.Google Scholar
Martio, O., Ryazanov, V., Srebro, U., and Yakubov, E., Moduli in modern mapping theory. Springer Science + Business Media, LLC, New York, NY, 2009.Google Scholar
Martio, O. and Sarvas, J., Injectivity theorems in plane and space . Ann. Acad. Sci. Fenn. Ser. A1 Math. 4(1978/1979), 384401.Google Scholar
Näkki, R., Boundary behavior of quasiconformal mappings in $n$ -space . Acad. Sci. Fenn. Ser. A. 484(1970), 150.Google Scholar
Näkki, R., Continuous boundary extension of quasiconformal mappings . Ann. Acasd. Sci. Fenn. Ser. A I. Math. 511(1970), 110.Google Scholar
Näkki, R., Extension of Loewner’s capacity theorem . Trans. Amer. Math. Soc. 180(1973), 229236.Google Scholar
Poleckii, E. A., The modulus method for nonhomeomorphic quasiconformal mappings . Mat. Sb. 83(1970), no. 125, 2(10), 261272.Google Scholar
Petkov, I., Salimov, R., and Stefanchuk, M., Nonlinear Beltrami equation: Lower estimates of Schwarz lemma’s type . Can. Math. Bull. 67(2024), no. 3, 533543.Google Scholar
Rajala, K., Mappings of finite distortion: Removability of Cantor sets . Ann. Acad. Sci. Fenn. Math. 29(2004), 269281.Google Scholar
Rickman, S., Quasiregular mappings. Springer-Verlag, Berlin, 1993.Google Scholar
Ryazanov, V. I. and Salimov, R. R., Weakly flat spaces and boundaries in the mapping theory . Ukr. Math. Bull. 4(2007), no. 2, 199233.Google Scholar
Ryazanov, V. and Volkov, S., On the boundary behavior of mappings in the class ${W}_{loc}^{1,1}$ on Riemann surfaces. Complex Anal. Oper. Theory 11(2017), 15031520.Google Scholar
Salimov, R. R. and Sevost’yanov, E. A., The theory of shell-based $Q$ -mappings in geometric function theory . Sb. Math. 201(2010), no. 6, 909934.Google Scholar
Salimov, R. R. and Stefanchuk, M. V., Functional asymptotics of solutions of the nonlinear Cauchy-Riemann-Beltrami system . J. Math. Sci. (United States) 277(2023), no. 2, 311328.Google Scholar
Sevost’yanov, E. A., Boundary extensions of mappings satisfying the Poletsky inverse in terms of prime ends . Ukr. Math. J. 73(2021), no. 7, 11071121.Google Scholar
Sevost’yanov, E. A., On boundary discreteness of mappings with a modulus conditions . Acta Math. Hung. 171(2023), no. 1, 6787.Google Scholar
Sevost’yanov, E. A., On boundary behavior of the open discrete mappings with unbounded characteristics . Ukr. Mat. J. 64(2012), no. 6, 979984.Google Scholar
Sevost’yanov, E. A., Mappings with direct and inverse poletsky inequalities, Developments in Mathematics (DEVM), 78, Springer Nature Switzerland AG, Cham, 2023.Google Scholar
Sevost’yanov, E. A. and Skvortsov, S. A., On the equicontinuity of families of mappings in the case of variable domains . Ukr. Math. J. 71(2019), no. 7, 10711086.Google Scholar
Sevost’yanov, E. A. and Skvortsov, S. A., Equicontinuity of families of mappings with one normalization condition . Math. Notes 109(2021), no. 4, 614622.Google Scholar
Sevost’yanov, E. A., Skvortsov, S. O., and Dovhopiatyi, O. P., On nonhomeomorphic mappings with the inverse Poletsky inequality . J. Math. Sci. 252(2021), no. 4, 541557.Google Scholar
Smolovaya, E. S., Boundary behavior of ring $Q$ -homeomorphisms in metric spaces . Ukr. Math. J. 62(2010), no. 5, 785793.Google Scholar
Srebro, U., Conformal capacity and quasiregular mappings . Ann. Acad. Sci. Fenn. Ser. A I. Math. 529(1973), 18.Google Scholar
Väisälä, J., Lectures on $n$ \!-dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, Berlin, 1971.Google Scholar
Vuorinen, M., Exceptional sets and boundary behavior of quasiregular mappings in $n$ -space . Ann. Acad. Sci. Fenn. Ser. A 1. Math. 11(1976), 144.Google Scholar