No CrossRef data available.
Article contents
Nearly invariant Brangesian subspaces
Part of:
Special classes of linear operators
General theory of linear operators
Spaces and algebras of analytic functions
Published online by Cambridge University Press: 07 January 2025
Abstract
This article describes Hilbert spaces contractively contained in certain reproducing kernel Hilbert spaces of analytic functions on the open unit disc which are nearly invariant under division by an inner function. We extend Hitt’s theorem on nearly invariant subspaces of the backward shift operator on $H^2(\mathbb {D})$ as well as its many generalizations to the setting of de Branges spaces.
Keywords
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society
References
Aleman, A., Baranov, A., Belov, Y., and Hedenmalm, H.,
Backward shift and nearly invariant subspaces of Fock-type spaces
. Int. Math. Res. Not. IMRN 2022(2020), 7390–7419.CrossRefGoogle Scholar
Aleman, A., Feldman, N., Ross, W., The Hardy space of a slit domain, Frontiers in Mathematics. Birkh
$\ddot{a}$
user, Verlag, Basel, 2009.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250209053227410-0650:S0008439524000687:S0008439524000687_inline726.png?pub-status=live)
de Branges, L. and Rovnyak, J., Square summable power series, Holt, Rinehart and Winston, New York-Toronto-London, 1966.Google Scholar
Chalendar, I., Chevrot, N., and Partington, J,
Nearly invariant subspaces for backwards shifts on vector-valued Hardy spaces
. J. Operator Theory 63(2010), 403–415.Google Scholar
Chalendar, I., Gallardo-Gutiérrez, E., and Partington, J.,
A Beurling Theorem for almost-invariant subspaces of the shift operator
. J. Operator Theory 83(2020), 321–331.CrossRefGoogle Scholar
Chattopadhyay, A. and Das, S.,
Study of nearly invariant subspaces with finite defect in Hilbert spaces
. Proc. Indian Acad. Sci. Math. Sci. 132(2022), no. 1, Paper No. 10, 26 pp.CrossRefGoogle Scholar
Chattopadhyay, A., Das, S., and Pradhan, C,
Almost invariant subspaces of the shift operator on vector-valued Hardy spaces
. Int. Eq. Operat. Theory 92(2020), 1–15.Google Scholar
Chevrot, N.,
Kernel of vector-valued Toeplitz operators
. Int. Eq. Operat. Theory 67(2010), 57–78.CrossRefGoogle Scholar
Erard, C.,
Nearly invariant subspaces related to multiplication operators in Hilbert spaces of analytic functions
. Int. Eq. Operat. Theory 50(2004), 197–210.CrossRefGoogle Scholar
Hayashi, E.,
The kernel of a Toeplitz operator
. Int. Eq. Operat. Theory 9(1986), 588–591.CrossRefGoogle Scholar
Hitt, D., Invariant subspaces of
${H}^2$
of an annulus. Pacific J. Math. 134(1988), 101–120.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250209053227410-0650:S0008439524000687:S0008439524000687_inline727.png?pub-status=live)
Liang, Y., and Partington, J. R.,
Nearly invariant subspaces for operators in Hilbert spaces
. Complex Anal. Oper. Theory 15(2021), 1–17.CrossRefGoogle Scholar
Sarason, D.,
Nearly invariant subspaces of the backward shift
. Operat. Theory: Advances Applicat. 35(1988), 481–493.Google Scholar
Sarason, D., Sub-Hardy Hilbert spaces in the unit disk, Lecture Notes in the. Mathematical Sciences, 10, Wiley, New York, 1994.Google Scholar
Yakubovich, D.,
Invariant subspaces of the operator of multiplication by
$z$
in the space
${E}^p$
in a multiply connected domain
. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 178(1989), Issled. Lineĭn. Oper. Teorii Funktsiĭ. 18, 166–183, 186–187; translation in J. Soviet Math. 61 (1992), 2046–2056Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250209053227410-0650:S0008439524000687:S0008439524000687_inline728.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250209053227410-0650:S0008439524000687:S0008439524000687_inline729.png?pub-status=live)