Article contents
Measurable and Continuous Units of an $E_{0}$-semigroup
Published online by Cambridge University Press: 25 March 2020
Abstract
Let $P$ be a closed convex cone in $\mathbb{R}^{d}$ which is spanning, i.e., $P-P=\mathbb{R}^{d}$ and pointed, i.e., $P\,\cap -P=\{0\}$. Let $\unicode[STIX]{x1D6FC}:=\{{\unicode[STIX]{x1D6FC}_{x}\}}_{x\in P}$ be an $E_{0}$-semigroup over $P$ and let $E$ be the product system associated to $\unicode[STIX]{x1D6FC}$. We show that there exists a bijective correspondence between the units of $\unicode[STIX]{x1D6FC}$ and the units of $E$.
Keywords
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
References
- 1
- Cited by