No CrossRef data available.
Article contents
Faltings extension and Hodge-Tate filtration for abelian varieties over p-adic local fields with imperfect residue fields
Part of:
Arithmetic problems. Diophantine geometry
Abelian varieties and schemes
(Co)homology theory
Published online by Cambridge University Press: 11 June 2020
Abstract
Let K be a complete discrete valuation field of characteristic $0$ , with not necessarily perfect residue field of characteristic $p>0$ . We define a Faltings extension of $\mathcal {O}_K$ over $\mathbb {Z}_p$ , and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
References
Abbes, A. and Gros, M., Les suites spectrales de Hodge-Tate. Preprint, 2020. arxiv:2003.04714
Google Scholar
Abbes, A., Gros, M., and Tsuji, T., The
$p$
-adic Simpson correspondence. Ann. Math. Stud., 193, Princeton University Press, Princeton, NJ, 2016. http://dx.doi.org/10.1515/9781400881239
Google Scholar
Caraiani, A. and Scholze, P., On the generic part of the cohomology of compact unitary Shimura varieties. Ann. of Math. (2) 186(2017), 649–766. http://dx.doi.org/10.4007/annals.2017.186.3.1
CrossRefGoogle Scholar
Deligne, P., Raynaud, M., Rim, D. S., and Grothendieck, A., Groupes de monodromie en géométrie algébrique. I. In: Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Mathematics, 288, Springer-Verlag, Berlin-New York, 1972.Google Scholar
Faltings, G.,
$p$
-adic Hodge theory. J. Amer. Math. Soc. 1(1988), 255–299. http://dx.doi.org/10.2307/1990970
Google Scholar
Faltings, G., Almost étale extensions. Cohomologies
$p$
-adiques et applications arithmétiques, II. Astérisque 279(2002), 185–270.Google Scholar
Fontaine, J.-M., Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux. Invent. Math. 65(1981/82), 379–409. http://dx.doi.org/10.1007/BF01396625
CrossRefGoogle Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math. 20(1964), 259.Google Scholar
Hyodo, O., On the Hodge-Tate decomposition in the imperfect residue field case. J. Reine Angew. Math. 365(1986), 97–113. http://dx.doi.org/10.1515/crll.1986.365.97
Google Scholar
Scholze, P., Perfectoid spaces: a survey. In: Current developments in mathematics, 2012, Int. Press, Somerville, MA, 2013, pp. 193–227.Google Scholar
Tate, J. T.,
$p$
-divisible groups. Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 158–183.CrossRefGoogle Scholar
The Stacks Project Authors, The stacks project. 2020. https://stacks.math.columbia.edu.Google Scholar
Tsuji, T.,
$p$
-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137(1999), 233–411. http://dx.doi.org/10.1007/s002220050330
CrossRefGoogle Scholar
Tsuji, T., Semi-stable conjecture of Fontaine-Jannsen: a survey. Cohomologies
$p$
-adiques et applications arithmétiques, II. Astérisque 279(2002), 323–370.Google Scholar