No CrossRef data available.
Article contents
Eisenstein congruences among Euler systems
Published online by Cambridge University Press: 06 November 2023
Abstract
We investigate Eisenstein congruences between the so-called Euler systems of Garrett–Rankin–Selberg type. This includes the cohomology classes of Beilinson–Kato, Beilinson–Flach, and diagonal cycles. The proofs crucially rely on different known versions of the Bloch–Kato conjecture, and are based on the study of the Perrin-Riou formalism and the comparison between the different p-adic L-functions.
- Type
- Article
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society
Footnotes
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 682152). Ó.R. was further supported by the Royal Society Newton International Fellowship (Grant No. NIF$\backslash$R1
$\backslash$202208). V.R. is supported by Icrea through an Icrea Academia Grant. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while Ó.R. was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2023 semester.
References














