Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-24T22:31:01.613Z Has data issue: false hasContentIssue false

The discrete Orlicz chord Minkowski problem

Published online by Cambridge University Press:  09 December 2024

Suwei Li
Affiliation:
Department of Mathematics, Suzhou University of Science and Technology, Suzhou, 215009 China e-mail: [email protected]
Hailin Jin*
Affiliation:
Department of Mathematics, Suzhou University of Science and Technology, Suzhou, 215009 China e-mail: [email protected]

Abstract

In this paper, we consider the discrete Orlicz chord Minkowski problem and solve the existence of this problem, which is the nontrivial extension of the discrete $L_{p}$ chord Minkowski problem for ${0<p<1}$.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Project supported by National Nature Science Foundation of China No. 12071334 and No. 12071277.

References

Bianchi, G., Böröczky, K. J., Colesanti, A. and Yang, D., The planar ${L}_p$ -Minkowski problem for $-n<p<1$ . Adv. Math. 341(2019), 493535.CrossRefGoogle Scholar
Böröczky, K. J., Lutwak, E., Yang, D. and Zhang, G., The logarithmic Minkowski problem . J. Amer. Math. Soc. 26(2013), 831852.CrossRefGoogle Scholar
Böröczky, K. J. and Trinh, H. T., The planar ${L}_p$ -Minkowski problem for $0<p<1$ . Adv. in Appl. Math. 81(2017), 5881.CrossRefGoogle Scholar
Chen, S., Li, Q. and Zhu, G., On the ${L}_p$ Monge-Ampé re equation. J. Differential Equations. 263(2017), 49975011.CrossRefGoogle Scholar
Chou, K.-S. and Wang, X.-J., The ${L}_p$ -Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205(2006), 3383.CrossRefGoogle Scholar
Gardner, R. J., Hu, D. and Weil, W., The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities . J. Differential Geom. 97(2014), 427476.CrossRefGoogle Scholar
Gardner, R. J., Hug, D., Weil, W., Xing, S. and Ye, D., General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I . Calc. Var. Partial Differential Equations. 58(2019), 35 pp.CrossRefGoogle Scholar
Gardner, R. J., Hug, D., Xing, S. and Ye, D., General volumes in the Orlica-Brunn-Minkowski theory and a related Minkowski problem II . Calc. Var. Partial Differential Equations 59 (2020), 33 pp.CrossRefGoogle Scholar
Guan, P. and Xia, C., The ${L}_p$ Christoffel-Minkowski problem: the case $1<p<k+1$ . Calc. Var. Partial Differential Equations 57(2018), 23 pp.CrossRefGoogle Scholar
Guo, L., Xi, D. and Zhao, Y., The ${L}_p$ chord Minkowski problem in a critical interval. Math. Ann. (2023), https://doi.org/10.1007/s00208-023-02721-8.Google Scholar
Haberl, C., Lutwak, E., Yang, D. and Zhang, G., The even Orlicz Minkowski problem . Adv. Math. 224(2010), 24852510.CrossRefGoogle Scholar
Hu, J. R., Huang, Y. and Lu, J., On the regularity of the chord log-Minkowski problem. Preprint, 2023, arXiv:2304.14220.Google Scholar
Hu, J. R., Huang, Y., Lu, J. and Wang, S. N., The chord gauss curvature flow and its ${L}_p$ chord Minkowski problem. Preprint, 2023, arXiv:2305.00453.Google Scholar
Huang, Q. and He, B., On the Orlicz Minkowski problem for polytopes . Discrete Comput. Geom. 48(2012), 281297.CrossRefGoogle Scholar
Huang, Y., Lutwak, E., Yang, D. and Zhang, G., The ${L}_p$ Alesandrov problem for ${L}_p$ integral curvature. J. Differential Geom. 110(2018), 129.CrossRefGoogle Scholar
Huang, Y. and Zhao, Y., On the ${L}_p$ dual Minkowski problem. Adv. Math. 332 (2018), 5784.CrossRefGoogle Scholar
Hug, D., Lutwak, E., Yang, D. and Zhang, G., On the ${L}_p$ Minkowski problem for polytopes. Discrete Comput. Geom. 33(2005), 699715.CrossRefGoogle Scholar
Li, Y., The ${L}_p$ chord Minkowski problem for negative $p$ . J. Geom. Anal. 34(2024), Paper No. 82, 23.CrossRefGoogle Scholar
Lutwak, E., The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem . J. Differential Geom. 38(1993), 131150.Google Scholar
Lutwak, E., Xi, D., Yang, D. and Zhang, G., Chord measures in integral geometry and their Minkowski problems . Comm. Pure Appl. Math. (2023), https://doi.org/10.1002/cpa.22190.Google Scholar
Lutwak, E., Yang, D., and Zhang, G., Orlicz projection bodies. Adv. Math. 223(2010), 220242.CrossRefGoogle Scholar
Wu, Y., Xi, D. and Leng, G., On the discrete Orlicz Minkowski problem . Trans. Amer. Math. Soc. 371(2019), 17951814.CrossRefGoogle Scholar
Xi, D., Jin, H. and Leng, G., The Orlicz Brunn-Minkowski inequality . Adv. Math. 260(2014) 350374.CrossRefGoogle Scholar
Xi, D., Yang, D., Zhang, G. and Zhao, Y., The ${L}_p$ chord Minkowski problem. Adv. Nonlinear Stud. 23 (2023), 22 pp.CrossRefGoogle Scholar
Xie, F., The Orlicz Minkowski problem for general measures . Proc. Amer. Math. Soc. 150(2022), 44334445. Google Scholar
Xie, F., The Orlicz Minkowski problem for cone-volume measure . Adv. in Appl. Math. 149(2023), Paper No. 102523, 18.Google Scholar
Zhao, X. and Zhao, P., Flow by Gauss curvature to the Orlicz chord Minkowski problem. Preprint, 2023, arXiv.2308.05332v2.CrossRefGoogle Scholar