Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:54:10.014Z Has data issue: false hasContentIssue false

Derivatives of Blaschke Products and Model Space Functions

Published online by Cambridge University Press:  12 November 2019

David Protas*
Affiliation:
Department of Mathematics, California State University, Northridge, California91330 Email: [email protected]

Abstract

The relationship between the distribution of zeros of an infinite Blaschke product $B$ and the inclusion in weighted Bergman spaces $A_{\unicode[STIX]{x1D6FC}}^{p}$ of the derivative of $B$ or the derivative of functions in its model space $H^{2}\ominus \mathit{BH}^{2}$ is investigated.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahern, P. R., The mean modulus and the derivative of an inner function. Indiana U. Math. J. 28(1979), 311347.CrossRefGoogle Scholar
Ahern, P. R., The Poisson integral of a singular measure. Canad. J. Math. 35(1983), 735749. https://doi.org/10.4153/cjm-1983-042-0CrossRefGoogle Scholar
Ahern, P. R. and Clark, D. N., On inner functions with H p-derivative. Michigan Math. J. 21(1974), 115127. https://doi.org/10.1307/mmj/1029001255Google Scholar
Ahern, P. R. and Clark, D. N., On inner functions with B p derivative. Michigan Math. J. 23(1976), 107118. https://doi.org/10.1307/mmj/1029001659Google Scholar
Aleman, A. and Vukotić, D., On Blaschke products with derivatives in Bergman spaces with normal weights. J. Math. Anal. Appl. 361(2010), 492505. https://doi.org/10.1016/j.jmaa.2009.07.030CrossRefGoogle Scholar
Cohn, W. S., On the H p classes of derivatives of functions orthogonal to invariant subspaces. Michigan Math. J. 30(1983), 221229. https://doi.org/10.1307/mmj/1029002853Google Scholar
Duren, P. L., Theory of H p Spaces. Academic Press, New York, 1970; reprinted with supplement by Dover Publications, Mineola, NY, 2000.Google Scholar
Duren, P. L. and Schuster, A. P., Bergman Spaces. Math. Surveys Monogr., 100, Providence, RI, 2004. https://doi.org/10.1090/surv/100CrossRefGoogle Scholar
Garcia, S. R., Mashreghi, J., and Ross, W. T., Introduction to Model Spaces and their Operators. Cambridge Stud. Adv. Math., Cambridge University Press, 2016.CrossRefGoogle Scholar
Gluchoff, A., On inner functions with derivative in Bergman spaces. Illinois J. Math. 31(1987), 518528. https://doi.org/10.1215/ijm/1256069298CrossRefGoogle Scholar
Hruscev, S. V., Nikol’skii, N. K., and Pavlov, B. S., Unconditional bases of exponentials and of reproducing kernels. In: Complex analysis and spectral theory. Lecture Notes in Math., 864, 1981, pp. 214335. https://doi.org/10.1007/bfb0097000CrossRefGoogle Scholar
Kim, H. O., Derivatives of Blaschke products. Pacific J. Math. 114(1984), 175190. https://doi.org/10.2140/pjm.1984.114.175CrossRefGoogle Scholar
Littlewood, J. E. and Paley, R. E. A. C., Theorems on Fourier series and power series (II). Proc. London Math. Soc. (2) 42(1937), 5289. https://doi.org/10.1112/plms/s2-42.1.52CrossRefGoogle Scholar
Mashreghi, J., Derivatives of Inner Functions. Fields Inst. Monogr., 31, Springer, New York (Fields Institute for Research in Mathematical Sciences. ON), Toronto, 2013. https://doi.org/10.1007/978-1-4614-5611-7CrossRefGoogle Scholar
Pérez-González, F., Reijonen, A., and Rättyä, J., Derivatives of inner functions in Bergman spaces induced by doubling weights. Ann. Acad. Sci. Fennicae Mathematica 42(2017), 735753. https://doi.org/10.5186/aasfm.2017.4248CrossRefGoogle Scholar
Protas, D., Mean growth of the derivative of a Blaschke product. Kodai Math J. 27(2004), 354359. https://doi.org/10.2996/kmj/1104247356CrossRefGoogle Scholar
Protas, D., Blaschke products with derivative in function spaces. Kodai Math J. 34(2011), 124131. https://doi.org/10.2996/kmj/1301576766CrossRefGoogle Scholar
Reijonen, A., Derivatives of Blaschke products whose zeros lie in a Stolz domain and weighted Bergman Spaces. Proc. Amer. Math. Soc. 146(2018), 11731180. https://doi.org/10.1090/proc/13791CrossRefGoogle Scholar
Reijonen, A., Remark on Integral Means of Derivatives of Blaschke Products. Canad. Math. Bull. 61(2018), 640649. https://doi.org/10.4153/cmb-2017-059-2CrossRefGoogle Scholar