No CrossRef data available.
Article contents
C*-algebras where every element is a limit of products of positive elements
Part of:
Selfadjoint operator algebras
Published online by Cambridge University Press: 11 August 2021
Abstract
We obtain a characterization of the unital C*-algebras with the property that every element is a limit of products of positive elements, thereby answering a question of Murphy and Phillips.
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2021
References
de la Harpe, P. and Skandalis, G.,
Déterminant associé à une trace sur une algébre de Banach
. Ann. Inst. Fourier (Grenoble). 34(1984), 241–260.CrossRefGoogle Scholar
Gong, G., Lin, H., and Xue, Y.,
Determinant rank of C*-algebras
. Pacific J. Math. 274(2015), 405–436.CrossRefGoogle Scholar
Murphy, G. J. and Phillips, N. C.,
C*-algebras with the approximate positive factorization property
. Trans. Amer. Math. Soc. 348(1996), 2291–2306.10.1090/S0002-9947-96-01657-1CrossRefGoogle Scholar
Quinn, T., Factorization in C*-algebras: products of positive operators. Ph.D. thesis, Dalhousie University, Halifax, and ProQuest LLC, Ann Arbor, MI, 1992.Google Scholar
Rieffel, M. A.,
Dimension and stable rank in the K-theory of C*-algebras
. Proc. Lond. Math. Soc. (3). 46(1983), 301–333.10.1112/plms/s3-46.2.301CrossRefGoogle Scholar
Rieffel, M. A.,
The homotopy groups of the unitary groups of noncommutative tori
. J. Operator Theory. 17(1987), 237–254.Google Scholar
Robert, L.,
Normal subgroups of invertibles and of unitaries in a C*-algebra
. J. Reine Angew. Math. 756(2019), 285–319.10.1515/crelle-2017-0020CrossRefGoogle Scholar
Thomsen, K.,
Traces, unitary characters and crossed products by Z
. Publ. Res. Inst. Math. Sci. 31(1995), 1011–1029.10.2977/prims/1195163594CrossRefGoogle Scholar