Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:54:27.538Z Has data issue: false hasContentIssue false

An energy decomposition theorem for matrices and related questions

Published online by Cambridge University Press:  15 May 2023

Ali Mohammadi
Affiliation:
School of Mathematics and Statistics, University of Sydney, Camperdown, NSW 2006, Australia e-mail: [email protected]
Thang Pham*
Affiliation:
University of Science, Vietnam National University, Hanoi 100000, Vietnam
Yiting Wang
Affiliation:
Institute of Science and Technology Austria, Klosterneuburg 3400, Austria e-mail: [email protected]

Abstract

Given $A\subseteq GL_2(\mathbb {F}_q)$, we prove that there exist disjoint subsets $B, C\subseteq A$ such that $A = B \sqcup C$ and their additive and multiplicative energies satisfying

$$\begin{align*}\max\{\,E_{+}(B),\, E_{\times}(C)\,\}\ll \frac{|A|^3}{M(|A|)}, \end{align*}$$

where

$$ \begin{align*} M(|A|) = \min\Bigg\{\,\frac{q^{4/3}}{|A|^{1/3}(\log|A|)^{2/3}},\, \frac{|A|^{4/5}}{q^{13/5}(\log|A|)^{27/10}}\,\Bigg\}. \end{align*} $$
We also study some related questions on moderate expanders over matrix rings, namely, for $A, B, C\subseteq GL_2(\mathbb {F}_q)$, we have
$$\begin{align*}|AB+C|, ~|(A+B)C|\gg q^4,\end{align*}$$
whenever $|A||B||C|\gg q^{10 + 1/2}$. These improve earlier results due to Karabulut, Koh, Pham, Shen, and Vinh ([2019], Expanding phenomena over matrix rings, $Forum Math.$, 31, 951–970).

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anh, D. N. V., Ham, L. Q., Koh, D., Pham, T., and Vinh, L. A., On a theorem of Hegyvári and Hennecart . Pacific J. Math. 305(2020), no. 2, 407421.CrossRefGoogle Scholar
Balog, A. and Wooley, T. D., A low-energy decomposition theorem . Q. J. Math. 68(2017), 207226.Google Scholar
Hegyvári, N. and Hennecart, F., Expansion for cubes in the Heisenberg group . Forum Math. 30(2018), 227236.CrossRefGoogle Scholar
Karabulut, Y. D., Koh, D., Pham, T., Shen, C.-Y., and Vinh, L. A., Expanding phenomena over matrix rings . Forum Math. 31(2019), 951970.CrossRefGoogle Scholar
Mohammadi, A. and Stevens, S., Low-energy decomposition results over finite fields. Preprint, 2021. arXiv:2102.01655 Google Scholar
Murphy, B. and Petridis, G., Products of differences over arbitrary finite fields. Discrete Anal. 18(2018), 142.Google Scholar
Roche-Newton, O., Rudnev, M., and Shkredov, I. D., New sum-product type estimates over finite fields . Adv. Math. 293(2016), 589605.CrossRefGoogle Scholar
Roche-Newton, O., Shparlinski, I. E., and Winterhof, A., Analogues of the Balog–Wooley decomposition for subsets of finite fields and character sums with convolutions . Ann. Comb. 23(2019), 183205.CrossRefGoogle Scholar
Rudnev, M., On the number of incidences between points and planes in three dimensions . Combinatorica 38(2018), 219254.CrossRefGoogle Scholar
Rudnev, M., Shkredov, I. D., and Stevens, S., On the energy variant of the sum-product conjecture . Rev. Mat. Iberoam. 36(2020), no. 1, 207232.CrossRefGoogle Scholar
Sárközy, A., On sums and products of residues modulo $p$ $.$ Acta Arith. 118(2005), 403409.CrossRefGoogle Scholar
Shkredov, I. D., An application of the sum-product phenomenon to sets avoiding several linear equations. Sbornik: Mathematics, 209(4), 580.CrossRefGoogle Scholar
Shkredov, I. D., A short remark on the multiplicative energy of the spectrum . Math. Notes 105(2019), 449457.CrossRefGoogle Scholar
Shkredov, I. D., A remark on sets with small Wiener norm . In: Raigorodskii, A. and Rassias, M. T. (eds.), Trigonometric sums and their applications, Springer, Cham, 2020, pp. 261272.CrossRefGoogle Scholar
Swaenepoel, C. and Winterhof, A., Additive double character sums over some structured sets and applications . Acta Arith. 199(2021), 135143.CrossRefGoogle Scholar
Vu, V., Sum-product estimates via directed expanders . Math. Res. Lett. 15(2008), 375388.CrossRefGoogle Scholar