Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T00:29:04.479Z Has data issue: false hasContentIssue false

Regulation of the p21Sdi1/Cip1/Waf1 DNA Synthesis Inhibitor in Senescent Human Diploid Fibroblasts

Published online by Cambridge University Press:  29 November 2010

Ryan S. Robetorye
Affiliation:
Baylor College of Medicine
James R. Smith
Affiliation:
Baylor College of Medicine

Abstract

A large body of evidence has demonstrated that normal human fibroblasts have a limited division potential in culture and underwent senescence, a process whereby cells became arrested in the G1 phase of the cell cycle and overexpressed a DNA synthesis inhibitor(s). Cyclin-dependent kinase two (Cdk2) is required for the promotion of the Gi-to-S phase transition in human cells. Senescent fibroblasts contain intact cyclin-Cdk2 complexes but cannot induce Cdk2 protein kinase activity in response to mitogen stimulation. Recently, we cloned p21Sdi1, a potent inhibitor of DNA synthesis and Cdk2 kinase activity, from a senescent cell cDNA library and demonstrated that it was expressed at significantly higher levels in senescent cells than actively proliferating cells. In contrast to actively dividing cells, mitogen-stimulated senescent cells do not down-regulate the expression of p21Sdi1 and do not express late G1 phase gene products that are required for entry into S phase. We suggest that the inability of mitogen-stimulated senescent cells to down-regulate p21Sdi1 levels contributes to the resulting lack of late Gi gene expression and failure to traverse the G1/S phase boundary.

Résumé

Il a été abondamment démontré que les fibroblastes humains normaux possèdent, en culture, un potentiel de division limité et sont soumis à la sénescence, un processus par lequel les cellules sont arrêtées à l'étape G1 du cycle cellulaire et contiennent une surabondance d'inhibiteurs de synthèse d'ADN. Le passage de la cellule humaine de l'étape G1 à l'étape S nécessite une kinase deux qui dépend de la cycline (Cdk2). Les fibroblastes en sénescence contiennent des complexes de Cdk2 mais ne peuvent produire l'activité de la protéine kinase Cdk2 en réaction à une stimulation mitogène. Récemment, à partir d'une banque D'ADNc de cellules sénescentes, nous avons cloné le p21Sdi1, un inhibiteur potentiel de la réplication de l'ADN et de l'activité de la kinase Cdk2, et démontré qu'on pouvait le trouver à des niveaux beaucoup plus élevés dans les cellules sénescentes que dans les cellules proliférantes actives. À l'encontre des cellules actives en division, les cellules sénescentes ne contrôlent pas à la baisse l'expression du p21Sdi1 et ne produisent pas de produits génétiques en phase G1 avancée nécessaires au passage en phase S. Nous croyons que l'incapacité des cellules sénescentes stimulées par mitogène de contrôler à la baisse les niveaux de p21Sdi1 contribue au manque d'expression génétique de la phase G1 et à l'échec du passage de la phase G1 à la phase S.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Goldstein, S.Replicative senescence: the human fibroblast comes of age. Science. 1990, 249, 11291133.CrossRefGoogle ScholarPubMed
2.Hayflick, L.The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965, 37, 614636.CrossRefGoogle ScholarPubMed
3.Hayflick, L., Moorhead, P.S.The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585621.CrossRefGoogle ScholarPubMed
4.Bierman, E.L.The effect of donor age on the in vitro life span of cultured human arterial smooth muscle cells. In Vitro. 1978, 14, 951955.CrossRefGoogle ScholarPubMed
5.Blomquist, E., Westermark, B., Ponten, J.Aging of human glial cells in culture: increase in the fraction of nondividers as demonstrated by a mini cloning technique. Mech. Ageing Dev. 1980, 12, 173182.CrossRefGoogle Scholar
6.Effros, R.B., Walford, R.L.T cell cultures and the Hayflick limit. Hum. Immunol. 1984, 9, 4965.CrossRefGoogle ScholarPubMed
7.McAllister, J.M., Hornsby, P.J.Improved clonal and nonclonal growth of human, rat, and bovine adrenocortical cells in culture. In Vitro Cell. Dev. Biol. 1987, 23, 677685.CrossRefGoogle ScholarPubMed
8.Medrano, E.E., Yang, F., Boissy, R., Farooqui, J., Shah, V., Matsumoto, K., Nordlund, J.J., Park, H.-Y.Terminal differentiation and senescence in the human melanocyte: repression of tyrosine-phosphorylation of the extracellular signal-regulated kinase 2 selectively defines the two phenotypes. Mol. Biol. Cell. 1994, 5, 497509.CrossRefGoogle ScholarPubMed
9.Rheinwald, J.G., Green, M.Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975, 6, 331334.CrossRefGoogle ScholarPubMed
10.Tassin, J., Malaise, E., Courtois, Y.Human lens cells have an in vitro proliferative capacity inversely proportional to the age. Exp. Cell Res. 1979, 123, 388392.CrossRefGoogle Scholar
11.Thornton, S.C., Mueller, S.N., Levine, E.M.Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science. 1983, 222, 623625.CrossRefGoogle ScholarPubMed
12.Schneider, E.L., Fowlkes, B.J.Measurement of DNA content and cell volume in senescent human fibroblasts utilizing flow miltiparameter single cell analysis. Exp. Cell Res. 1976, 98, 298302.CrossRefGoogle ScholarPubMed
13.Sherwood, S.W., Rush, D., Ellsworth, J.L., Schimke, R.T.Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc. Natl. Acad. Sci. USA. 1988, 85, 90869090.CrossRefGoogle Scholar
14.Yanishevsky, R., Carrano, A.V.Prematurely condensed chromosomes of dividing and non-dividing cells in aging human cell cultures. Exp. Cell Res. 1975, 90, 169174.CrossRefGoogle ScholarPubMed
15.Yanishevsky, R., Mendelsohn, M.L., Mayall, B.H., Cristofalo, V.J.Proliferative capacity and DNA content of aging human diploid cells in culture: a cytophotometric and autoradiographic analysis. J. Cell. Physiol. 1974, 84, 165170.CrossRefGoogle ScholarPubMed
16.Cristofalo, V.J., Sharf, B.B.Cellular senescence and DNA synthesis. Exp. Cell Res. 1973, 76, 419427.CrossRefGoogle ScholarPubMed
17.Matsumura, T., Pfendt, E.A., Hayflick, L.DNA synthesis in the human diploid cell strain WI-38 during in vitro aging: an autoradiographic study. J. Gerontol. 1979, 34, 323327.CrossRefGoogle Scholar
18.Norwood, T.H., Pendergrass, W.R., Sprague, C.A., Martin, G.M.Dominance of the senescent phenotype in heterokaryons between replicative and post-replicative human fibroblast-like cells. Proc. Natl. Acad. Sci. USA. 1974, 71, 22312235.CrossRefGoogle ScholarPubMed
19.Yanishevsky, R.M., Stein, G.H.Ongoing DNA synthesis continues in young human diploid cells (HDC) fused to senescent HDC, but entry into S phase is inhibited. Exp. Cell Res. 1980, 126, 469472.CrossRefGoogle ScholarPubMed
20.Burmer, G.C., Zeigler, C.J., Norwood, T.H.Evidence for endogenous polypeptide mediated inhibition of cell cycle transit in human diploid cells. J. Cell Biol. 1982, 94, 187192.CrossRefGoogle ScholarPubMed
21.Stein, G.H., Yanishevsky, R.M.Entry into S phase is inhibited in two immortal cell lines fused to senescent human diploid cells. Exp. Cell Res. 1979, 120, 155165.CrossRefGoogle ScholarPubMed
22.Norwood, T.H., Pendergrass, W.R., Martin, G.M.Reinitiation of DNA synthesis in senescent human fibroblasts upon fusion with cells of unlimited growth potential. J. Cell Biol. 1975, 64, 551556.CrossRefGoogle ScholarPubMed
23.Stein, G.H., Yanishevsky, R.M., Gordon, L., Beeson, M.Carcinogen-transformed human cells are inhibited from entry into S phase by fusion to senescent cells but cells transformed by DNA tumor viruses overcome the inhibition. Proc. Natl. Acad. Sci. USA. 1982, 79, 52875291.CrossRefGoogle ScholarPubMed
24.Gorman, S.D., Cristofalo, V.J.Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J. Cell Physiol. 1985, 125, 122126.CrossRefGoogle ScholarPubMed
25.Ide, T., Tsuji, Y., Ishibashi, S., Mitsui, Y., Toba, M.Induction of host DNA synthesis in senescent human diploid fibroblasts by infection with human cytomegalovirus. Mech. Ageing Dev. 1984, 25, 227235.CrossRefGoogle ScholarPubMed
26.Lumpkin, C.K., Knepper, J.E., Butel, J.S., Smith, J.R., Pereira-Smith, O.M.Mitogenic effects of the proto-oncogene and oncogene forms of c-H-ros DNA in human diploid fibroblasts. Mol. Cell. Biol. 1986, 6, 29902993.Google ScholarPubMed
27.Pereira-Smith, O.M., Smith, J.R.Phenotype of low proliferative potential is dominant in hybrids of normal human fibroblasts. Somat. Cell Genet. 1982, 8, 731742.CrossRefGoogle ScholarPubMed
28.Burmer, G.C., Motulsky, H., Zeigler, C.J., Norwood, T.H.Inhibition of DNA synthesis in young cycling human diploid fibroblast cells upon fusion to enucleate cytoplasts from senescent cells. Exp. Cell. Res. 1983, 15, 7984.CrossRefGoogle Scholar
29.Drescher-Lincoln, C.K., Smith, J.R.Inhibition of DNA synthesis in senescent-proliferating human cybrids is mediated by endogenous proteins. Exp. Cell. Res. 1984, 153, 208217.CrossRefGoogle ScholarPubMed
30.Lumpkin, C.K., McClung, J.K., Pereira-Smith, O.M., Smith, J.R.Existence of high abundance antiproliferative messenger RNA in senescent human diploid fibroblasts. Science. 1986, 232, 393395.CrossRefGoogle ScholarPubMed
31.Noda, A., Ning, Y., Venable, S.F., Pereira-Smith, O.M., Smith, J.R.Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211, 9098.CrossRefGoogle Scholar
32.Smith, J.R.Inhibitors of DNA synthesis derived from senescent human diploid fibroblasts. Exp. Gerontol. 1992, 27, 409412.CrossRefGoogle ScholarPubMed
33.Gu, Y., Turck, C.W., Morgan, D.O.Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature. 1993, 366, 707710.CrossRefGoogle ScholarPubMed
34.El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., Vogelstein, B.WAF1, a potential mediator of p53 tumor suppression. Cell. 1993, 75, 817825.CrossRefGoogle ScholarPubMed
35.Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., Elledge, S.J.The p21 Cdk-interacting protein Cipl is a potent inhibitor of Gl cyclin-dependent kinases. Cell. 1993, 75, 805816.CrossRefGoogle Scholar
36.Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., Beach, D.p21 is a universal inhibitor of cyclin kinases. Nature. 1993, 366, 701704.CrossRefGoogle ScholarPubMed
37.Jiang, H., Fisher, P.B.Use of a sensitive and efficient subtraction hybridization protocol for the identification of genes differentially regulated during the induction of differentiation in human melanoma cells. Mol. Cell. Different. 1993, 1, 285299.Google Scholar
38.Halevy, O., Novitch, B.G., Spicer, D.B., Skapek, S.X., Rhee, J., Hannon, G.J., Beach, D., Lassar, A.B.Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by Myo D. Science. 1995, 267, 10181021.CrossRefGoogle Scholar
39.Parker, S.B., Eichele, G., Zhang, P., Rawls, A., Sands, A.T., Bradley, A., Olson, E.N., Harper, J.W., Elledge, Stephen J.. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science. 1995, 267, 10241027.CrossRefGoogle ScholarPubMed
40.Skapek, S.X., Rhee, J., Spicer, D.B., Lassar, A.B.Inhibition of myogenic differentiation in proliferating myoblasts by cyclin Dl-dependent kinase. Science. 1995, 267, 10221024.CrossRefGoogle Scholar
41.King, R.W., Jackson, P.K., Kirschner, M.W.Mitosis in transition. Cell. 1994, 79, 563571.CrossRefGoogle ScholarPubMed
42.Sherr, C.J.Gi phase progression: cycling on cue. Cell. 1994, 79, 551555.CrossRefGoogle Scholar
43.Pagano, M., Pepperkok, R., Lukas, J., Baldin, V., Ansorge, W., Bartek, J., Draetta, G.Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol. 1993, 121, 101111.CrossRefGoogle ScholarPubMed
44.Tsai, L.-H., Lees, E., Faha, B., Harlow, E., Riabowol, K.The cdk2 kinase is required for the Gi-to-S transition in mammalian cells. Oncogene. 1993, 8, 15931602.Google ScholarPubMed
45.van den Heuvel, S., Harlow, E.Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 1993, 262, 20502054.CrossRefGoogle ScholarPubMed
46.Robetorye, R.S., Nakanishi, M., Venable, S.F., Pereira-Smith, O.M., Smith, J.R.Regulation of p21Sdi1/Cip1/waf1/mda-6 and expression of other cyclin-dependent kinase inhibitors in senescent human cells. Mol. & Cell. Differentiation. 1996, 4(1), 113126.Google Scholar
47.Nakanishi, M., Adami, G.R., Robetorye, R.S., Noda, A., Venable, S.F., Dimitrov, D., Pereira-Smith, O.M., Smith, J.R.Exit from Go and entry into the cell cycle of cells expressing SD11 antisense RNA. Proc. Natl. Acad. Sci. USA. 1995, 92, 4352–356.CrossRefGoogle Scholar
48.Nakanishi, M., Robetorye, R.S., Adami, G.R., Pereira-Smith, O.M., Smith, J.R.Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. EMB0 j. 1995 14 555563.CrossRefGoogle ScholarPubMed
49.Zhang, H., Xiong, Y., Beach, D.p21-containing cyclin kinases exist in both active and inactive states. Genes Dev. 1994, 8, 17501758.CrossRefGoogle ScholarPubMed
50.Harley, C.B., Vaziri, H., Counter, C.M., Allsopp, R.C.The telomere hypothesis of cellular aging. Exp. Gerontol. 1992, 27, 377382.CrossRefGoogle ScholarPubMed
51.Wright, W.E., Shay, J.W.Telomere positional effects and the regulation of cellular senescence. Trends Genet. 1992, 8, 193197.CrossRefGoogle ScholarPubMed
52.Di Leonardo, A., Linke, S.P., Clarkin, K., Wahl, G.M.DNA damage triggers a prolong p53-dependent Gi arrest and long-term induction of Cip 1 in normal human fibroblasts. Genes Dev. 1984, 8, 25402551.CrossRefGoogle Scholar
53.Dulic, V., Kaufmann, W.K., Wilson, S.J., Tisty, T.D., Lees, E., Harper, J.W., Elledge, S.J., Reed, S.I.p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced Gi arrest. Cell. 1994, 76, 10131023.CrossRefGoogle Scholar
54.Rittling, S.R., Brooks, K.M., Cristofalo, V.J., Baserga, R.Expression of cell cycle-dependent genes in young and senescent WI-38 fibroblasts. Proc. Natl. Acad. Sci. USA. 83, 33163320.CrossRefGoogle Scholar
55.Afshari, C.A., Vojta, P.J., Annab, L.A., Futreal, P.A., Willard, T.B., Barrett, J.C.Investigation of the role of G1/S cell cycle mediators in cellular senescence. Exp. Cell Res. 209, 231237.CrossRefGoogle Scholar
56.Kulju, K.S., Lehnman, J.M.Increased p53 protein associated with aging in human diplod fibroblasts. Exp. Cell Res. 1995, 217, 336345.CrossRefGoogle Scholar
57.Bond, J.A., Blaydes, J.P., Rowson, J., Haughton, M.D., Smith, J.R., Wynford-Thomas, D., Wyllie, F.S.Mutant p53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1. Can. Res. 1995, 55, 24042409.Google ScholarPubMed
58.Atadja, P., Wong, H., Garkavtsev, I., Veillette, C, Riabowol, K.Increased activity of p. 53 in senescing fibroblasts. Proc. Natl. Acad. Sci. 1995, 92, 83488352.CrossRefGoogle Scholar
59.Stein, G.H., Beeson, M., Gordon, L.Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science. 1990, 249, 666669.CrossRefGoogle ScholarPubMed
60.Buchkovich, K., Duffy, L.A., Harlow, E.The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell. 1989, 58, 10971105.CrossRefGoogle ScholarPubMed
61.Goodrich, D.W., Wang, N.P., Qian, Y.-W., Lee, E.Y.-H.P., Lee, W.-H.The retinoblastoma gene regulates progression through the Gi phase of the cell cycle. Cell. 1991, 67, 293302.CrossRefGoogle Scholar
62.Phillips, P.D., Pignolo, R.J., Nishikura, K., Cristofalo, V.J.Renewed DNA synthesis in senescent WI-38 cells by expression of an inducible chimeric c-fos construct. J. Cell. Physiol. 1992, 151, 206212.CrossRefGoogle ScholarPubMed
63.Dulic, V., Drullinger, L.F., Lees, E., Reed, S.I., Stein, G.H.Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin Dl-Cdk2 complexes. Proc. Natl. Acad. Sci. USA. 1993, 90, 1103411038.CrossRefGoogle ScholarPubMed
64.Lucibello, F.C., Sewing, A., Brusselbach, S., Burger, C, Muller, R.Deregulation of cyclins D1 and E and suppression of cdk2 and cdk4 in senescent human fibroblasts. J. Cell Sci. 1993, 105, 123133.CrossRefGoogle Scholar
65.Seshadri, T., Campisi, J.Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science. 1990, 247, 205209.CrossRefGoogle Scholar
66.Dimiri, G.P., Hara, E., Campisi, J.Regulation of two E2F-related genes in presenescent and senescent human fibroblasts. J. Biol. Chem. 1994, 269, 1618016186.CrossRefGoogle Scholar
67.Pang, J.H., Chen, K.Y.Global change of gene expression at late G1/S boundary may occur in human IMR-90 diploid fibroblasts during senescence. J. Cell Physiol. 1994, 160, 531538.CrossRefGoogle ScholarPubMed
68.Stein, G.H., Drullinger, L.F., Robetorye, R.S., Pereira-Smith, O.M., Smith, J.R.Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen stimulation. Proc. Natl. Acad. Sci. USA. 1991, 88, 1101211016.CrossRefGoogle ScholarPubMed
69.Chang, C.-D., Phillips, P., Lipson, K.E., Cristofalo, V.J., Baserga, R.Senescent human fibroblasts have a post-transcriptional block in the expression of the proliferating cell nuclear antigen gene. J. Biol. Chem. 1991, 266, 86638666.CrossRefGoogle ScholarPubMed
70.Chellappan, S.P., Hiebert, S., Mudryj, M., Horowitz, J.M., Nevins, J.R.The E2F transcription factor is a cellular target for the RB protein. Cell. 1991, 65, 10531061.CrossRefGoogle ScholarPubMed
71.Schwarz, J.K., Devoto, S.H., Smith, E.J., Chellappan, S.P., Jakoi, L., Nevins, J.R.Interactions of the p107 and Rb proteins with E2F during the cell proliferation response. EMBO J. 1993, 12, 10131020.CrossRefGoogle ScholarPubMed
72.Cobrinik, D., Whyte, P., Peeper, D.S., Jacks, T., Weinberg, R.A.Cell cycle-specific association of E2F with the p130 ElA-binding protein. Genes Dev. 1993, 7, 23922404.CrossRefGoogle Scholar
73.Johnson, D.G., Ohtani, K., Nevins, J.R.Autoregulatory control oiE2Fl expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 1994, 8, 15141525.CrossRefGoogle ScholarPubMed
74.Dimri, G.P., Nakanishi, M., Desprez, P-Y., Smith, J.R., Campisi, J. In press, Molec. Cell Biology. 1975.Google Scholar
75.Harmon, G.J., Beach, D.p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature. 1994, 371, 257261.Google Scholar
76.Serrano, M., Hannon, G.J., Beach, D.A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD/CDK4. Nature. 1993, 366, 704707.CrossRefGoogle Scholar
77.Guan, K.-L., Jenkins, C.W., Li, Y, Nichols, M.A., Wu, X., O'Keefe, C.L., Matera, A.G., Xiong, Y.Growth suppression by p18, a p16INK4/MTSI-and p14lNK4B/MTS2 -reiated CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 1994, 8, 29392952.CrossRefGoogle Scholar
78.Polyak, K, Lee, M.-H., Erdjument-Bromage, H., Koff, A., Roberts, J.M., Tempst, P., Massague, J.Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994, 78, 5966.CrossRefGoogle Scholar
79.Toyoshima, H., Hunter, T.p27, a novel inhibitor of Gl cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994, 78, 6774.CrossRefGoogle Scholar
80.Kato, J.-Y., Matsushime, H., Hiebert, S.W., Ewen, M.E., Sherr, C.J.Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993, 7, 331342.Google Scholar