Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:41:21.788Z Has data issue: false hasContentIssue false

Life History and Risk of Death after 50: A Survival Analysis for Europe

Published online by Cambridge University Press:  09 December 2015

Anna Nicińska*
Affiliation:
University of Warsaw, Faculty of Economic Sciences, Poland
Małgorzata Kalbarczyk-Stęclik*
Affiliation:
University of Gothenburg, Faculty of Social Sciences, Sweden
*
Correspondence and requests for offprints should be sent to: / La correspondance et les demandes de tirés-à-part doivent être adressées à : Anna Nicińska, Ph.D. University of Warsaw Faculty of Economic Sciences Długa 44/50, 00-241 Warsaw, Poland ([email protected]) or Małgorzata Kalbarczyk-Stęclik, Ph.D. University of Gothenburg Faculty of Social Sciences Sprängkullsgatan 25 S-40530 Gothenburg, Sweden ([email protected])
Correspondence and requests for offprints should be sent to: / La correspondance et les demandes de tirés-à-part doivent être adressées à : Anna Nicińska, Ph.D. University of Warsaw Faculty of Economic Sciences Długa 44/50, 00-241 Warsaw, Poland ([email protected]) or Małgorzata Kalbarczyk-Stęclik, Ph.D. University of Gothenburg Faculty of Social Sciences Sprängkullsgatan 25 S-40530 Gothenburg, Sweden ([email protected])

Abstract

In this study we investigated the impact of events from an individual’s past on the risk of death for Europeans aged 50 and older, controlling for other relevant variables. Our analysis was based on the data from retrospective biographic interviews, regular longitudinal interviews, and end-of-life interviews from the Survey of Health, Ageing and Retirement in Europe. In particular, we captured retrospectively self-reported health in childhood; periods of poverty, hunger, and poor health experienced in the past; and the history of health care, including regular dental care, blood tests, and blood pressure measurements. This information, along with age, gender, current subjective and objective health, and other socio-demographic characteristics, enables assessment of the risk of death. We applied the proportional hazard model to explain the risk of death. The survival analysis shows that events experienced in the past significantly affect risk of death for Europeans aged 50 and older, controlling for other relevant variables.

Résumé

Dans notre étude nous avons examiné l’influence des événements du passé des individus sur le risque de décès des Européens âgés de plus de 50 ans, en contrôlant autres variables pertinentes. Notre analyse était basée sur les données d’entretiens biographiques rétrospectifs, les données d’entretiens réguliers au suivi longitudinal et celles d’entretiens de fin de vie de l’Enquête européenne SHARE sur la santé, le vieillissement et la retraite en Europe. En particulier, nous relevons l’état de santé auto-déclaré pendant l’enfance; les périodes de pauvreté, de faim et de mauvaise santé éprouvées dans le passé; et aussi l’histoire des soins de santé, y compris les soins dentaires, les analyses de sang et les mesures de pression artérielle. Ces informations, avec l’age, le sexe, l’état de santé subjectif et objectif, et d’autres facteurs socio-démographiques, permettent d’expliquer le risque de décès. L’analyse de survie, en contrôlant des variables pertinentes, montre que les événements du passé ont un impact significatif sur le risque de décès des Européens âgés de plus de 50 ans.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D. J. P. (1998). Programming the baby. In: Barker, D. J. P. (Ed.), Mothers, babies and health in later life (pp. 1341). Edinburgh: Churchill Livingstone.Google Scholar
Baker, D. W., Wolf, M. S., Feinglass, J., & Thompson, J. A. (2008). Health literacy, cognitive abilities, and mortality among elderly persons. Journal of General Internal Medicine, 23(6), 723–726.CrossRefGoogle ScholarPubMed
Benzeval, M., & Judge, K. (2001). Income and health: The time dimension. Social Science & Medicine, 52, 13711390.CrossRefGoogle ScholarPubMed
Birnie, K., Cooper, R., Martin, R. M., Kuh, D., Sayer, A. A., Alvarado, B. E., et al. (2011). Childhood socioeconomic position and objectively measured physical capability levels in adulthood: A systematic review and meta-analysis. PLoS One 6(1). doi: 10.1371/journal.pone.0015564.CrossRefGoogle ScholarPubMed
Blom, A. G., & Schröder, M. (2011). Sample composition 4 years on: Retention in SHARE wave 3. In: Schröder, M. (Ed.), Retrospective data collection in the Survey of Health, Ageing and Retirement in Europe. SHARELIFE Methodology (pp. 5561). Mannheim, Germany: Mannheim Research Institute for the Economics of Ageing.Google Scholar
Börsch-Supan, A., Krieger, U., & Schröder, M. (2013). Respondent incentives, interviewer training and survey participation. SHARE Working Paper 122013.Google Scholar
Buckley, N. J., Denton, F. T., Robb, A. L., & Spencer, B. G. (2004). The transition from good to poor health: An econometric study of the older population. Journal of Health Economics, 23, 10131034.Google Scholar
Case, A., Fertig, A., & Paxson, C. (2005). The lasting impact of childhood health and circumstance. Journal of Health Economics, 24(2), 365–389.Google Scholar
Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society: Series B, 34(2), 187220.Google Scholar
Doblhammer, G. (1999). Longevity and month of birth. Evidence from Austria and Denmark. Demographic Research, 1. doi: 10.4054/DemRes.1999.1.3.Google Scholar
Eurostat. (2012). Causes of death—Absolute number (annual data). Retrieved from http://epp.eurostat.ec.europa.eu/portal/page/portal/product_details/dataset?p_product_code=HLTH_CD_ANR.Google Scholar
Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C., & Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: Longitudinal study. BMJ, 322(7292), 949–953.Google Scholar
Foster, J. R. (1997). Successful coping, adaptation and resilience in the elderly: An interpretation of epidemiologic data. Psychiatric Quarterly, 68(3), 189219.Google Scholar
Frankenberg, E., & Jones, N. R., (2004). Self-rated health and mortality: Does the relationship extend to a low income setting? Journal of Health and Social Behaviour, 45, 441452.Google Scholar
Gavrilov, L. A., & Gavrilova, N. S. (2006). Models of systems failure in aging. In: Conn, M. P. (Ed.), Handbook of models for human aging (pp. 4568). Burlington, MA: Elsevier.Google Scholar
Gavrilov, L. A., & Gavrilova, N. S. (2011). Season of birth and exceptional longevity: Comparative study of American centenarians, their siblings, and spouses. Journal of Aging Research. doi: 10.4061/2011/104616.Google Scholar
Gompertz, B. (1825). On the nature of the function expressive of the law of the human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 27, 513583.Google Scholar
Grossman, M. (1972). On the concept of health capital and the demand for health. Journal of Political Economy, 80(2), 223255.Google Scholar
Hertzman, C. (1999). The biological embedding of early experience and its effects on health in adulthood. In: Adler, N. E., Marmot, M., McEwen, B. S., Stewart, J. (Eds.), Socioeconomic status and health in industrial nations (pp. 8595). New York: New York Academy of Sciences.Google Scholar
Ho, S.-H. (2008). Survival analysis of living arrangements and health care utilization in terms of total mortality among the middle aged and elderly in Taiwan. The Journal of Nursing Research, 16, 160168.Google Scholar
Idler, E. L., & Benyamini, Y. (1997). Self-rated health and mortality: A review of twenty-seven community studies. Journal of Health and Social Behaviour, 38, 2137.Google Scholar
Kannisto, V., Christensen, K., & Vaupel, J. W. (1997). No increased mortality in later life for cohorts born during famine. American Journal of Epidemiology, 145(11), 987–994.CrossRefGoogle ScholarPubMed
Kuh, D., Ben-Shlomo, Y., Lynch, J., Hallqvist, J., & Power, C. (2003). Life course epidemiology. Journal of Epidemiology & Community Health, 57, 778783.Google Scholar
Kunst, A. E., & Mackenbach, J. P. (1994). The size of mortality differences associated with educational level in nine industrialized countries. American Journal of Public Health, 84, 932937.CrossRefGoogle ScholarPubMed
Kajantie, E., Osmond, C., Barker, D. J., Forsén, T., Phillips, D. I., & Eriksson, J. G. (2005). Size at birth as a predictor of mortality in adulthood: A follow-up of 350 000 person-years. International Journal of Epidemiology, 34, 655–663.Google Scholar
Leon, D. A., Lithell, H. O., Vâgerö, D., Koupilová, I., Mohsen, R., Berglund, L., et al. (1998). Reduced fetal growth rate and increased risk of death from ischaemic heart disease: Cohort study of 15 000 Swedish men and women born 1915–29. BMJ, 317, 241–245.Google Scholar
Leventhal, E. A. (1994). Gender and aging: Women and their aging. In: Adesso, V. J., Reddy, D. M., & Fleming, R. (Eds.), Psychological perspectives on women’s health (pp. 1135). Washington, DC: Taylor & Francis.Google Scholar
Lucas, A. (1991). Programming by early nutrition in man. In: Bock, G. R., & Whelan, J. (Eds.), The childhood environment and adult disease (pp. 3849). New York: John Wiley & Sons.Google Scholar
Mackenbach, J. P., Avendano, M., Andersen-Ranberg, K., & Aro, A. R. (2005). Physical health. In: Börsch-Supan, A. (Ed.), Ageing and retirement in Europe. First results from the Survey on Health, Ageing and Retirement in Europe (pp. 8288). Mannheim, Germany: Mannheim Research Institute for the Economics of Ageing. Google Scholar
Macmillan, R. (2005). The structure of the life course: Classic issues and current controversies. Advances in Life Course Research, 9, 324.Google Scholar
Manton, K. G., Stallard, E., & Vaupel, J. W. (1981). Methods for comparing the mortality experience of heterogeneous populations. Demography, 18(3), 389410.CrossRefGoogle ScholarPubMed
Menchik, P. L. (1993). Economic status as a determinant of mortality among black and white older men: Does poverty kill? Population Studies, 47(3), 427436.Google Scholar
Naess, O., Hernes, F. H., & Blane, D. (2006). Life-course influences on mortality at older ages: Evidence from the Oslo mortality study. Social Science & Medicine, 62(2), 329336.Google Scholar
Nishimura, R. A. (2002). Aortic valve disease. Circulation, 106, 770772.Google Scholar
Olsson, C. A., Bond, L., Burns, J. M., Vella-Brodrick, D. A., & Sawyer, S. M. (2003). Adolescent resilience: A concept analysis. Journal of Adolescence, 26, 111.Google Scholar
Palloni, A. C., Milesi, C., White, R. G., & Turner, A. (2009). Early childhood health, reproduction of economic inequalities and the persistence of health and mortality differentials. Social Science & Medicine, 68, 15741582.Google Scholar
Power, C., Manor, O., & Matthews, S. (1999). The duration and timing of exposure: Effects of socioeconomic environment on adult health. American Journal of Public Health, 89(7), 10591065.CrossRefGoogle ScholarPubMed
Preston, S. H., Hill, M. E., & Drevenstedt, G. L. (1998). Childhood conditions that predict survival to advanced ages among African–Americans. Social Science & Medicine, 47(9), 12311246.Google Scholar
Pudrovska, T., & Anikputa, B. (2014). Early-life socioeconomic status and mortality in later life: An integration of four life-course mechanisms. The Journals of Gerontology: Series B, 69(3), 451460.CrossRefGoogle ScholarPubMed
Robert, S. A., & House, J. S. (2000). Socioeconomic inequalities in health: An enduring sociological problem. In: Bird, C. E., Conrad, P., & Fremont, A. M. (Eds.), Handbook of medical sociology (pp. 7997). Upper Saddle River, NJ: Prentice Hall.Google Scholar
Strandberg, T. E., Stenholm, S., Strandberg, A. Y., Salomaa, V. V., Pitkälä, K. H., & Tilvis, R. S. (2013). The “obesity paradox,” frailty, disability, and mortality in older men: A prospective, longitudinal cohort study. American Journal of Epidemiology, 178(9), 14521460.Google Scholar
Tuljapurkar, S., & Steiner, U. K. (2010). Dynamic heterogeneity and life histories. Annals of the New York Academy of Sciences, 1204, 6572.Google Scholar
van den Berg, G. J., & Lindeboom, M. (2007). Birth is the messenger of death—but policy may help to postpone bad news. Network for Studies on Pensions, Aging and Retirement, Tilburg.Google Scholar
van den Berg, G. J., Pinger, P. R., & Schoch, J. (2012). Instrumental variable estimation of the casual effect of hunger early in life on health later in life. ZEW Discussion Paper No. 12019.Google Scholar
Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439–454.Google Scholar
Vaupel, J. W., Yashin, A. I., & Manton, K. G. (1988). Debilitation’s aftermath: Stochastic process models of mortality. Math Population Studies, 1(1), 2148.Google Scholar
Wadsworth, M. E. J. (1997). Health inequalities in the life course perspective. Social Science & Medicine, 44, 859869.Google Scholar
Zolkoski, S. M., & Bullock, L. M. (2012). Resilience in children and youth: A review. Child and Youth Services Review, 34, 22952303.Google Scholar