Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:55:39.504Z Has data issue: false hasContentIssue false

Comparison of Histochemical, Biochemical and Contractile Properties of Triceps Surae of Trained Aged Subjects*

Published online by Cambridge University Press:  29 November 2010

L. Keh-Evans
Affiliation:
The University of Western Ontario
C. L. Rice
Affiliation:
The University of Western Ontario
E. G. Noble
Affiliation:
The University of Western Ontario
D. H. Paterson
Affiliation:
The University of Western Ontario
D. A. Cunningham
Affiliation:
The University of Western Ontario
A. W. Taylor
Affiliation:
The University of Western Ontario

Abstract

Contractile, histochemical and biochemical properties of the triceps surae were compared in 13 aerobically trained male subjects aged 63 to 76 years. Electrical stimulation of the triceps surae was used to determine muscle twitch, tetanic, and fatigue parameters. From these tests, twitch tension (Pt), time to peak tension (TPT), half relaxation time (RT), tetanic tensions at 10(Po10), 20(Po20), and 50(Po50) Hz and a fatigue index (FI) were calculated. Muscle samples from the belly of the lateral head of the gastrocnemius were obtained using the needle biopsy technique. A portion of each sample was tested histochemically for myosin ATPase (pH 4.30, 4.58 and 10.00) and NADH-tetrazolium reductase in order to classify fibre types (ST, FTa, FTb) and to determine fibre areas. The remainder of each sample was analysed for succinic dehydrogenase (SDH) and phosphofructokinase (PFK) enzyme activities. Significant correlations were found between fibre areas (both ST and FT) and Po10/Po50 and FI. No significant relationships were noted between Pt, 1/2RT and MVC and any histochemical parameter. SDH and PFK activities did not correlate significantly with any histochemical or physiological parameter. Regular endurance exercise apparently does not retard the decline in contractile properties seen with the aging process. Substrate related regulatory enzyme activities (PFK) and marker enzyme activities (SDH) from skeletal muscle of the elderly are much lower than activities found in younger subjects, despite regular aerobic exercise.

Résumé

L'étude avait pour but de comparer les propriétés contractiles, histochimiques et biochimiques du muscle triceps sural de 13 sujets mâles âgés de 63 à 76 ayant suivi un entrâinement aérobique. Une stimulation électrique fut appliquée au muscle triceps sural des sujets afin de déterminer les paramètres de secousse musculaire élémentaire, de tétanisation et de fatigue. Ces tests ont permis de calculer la tension de secousse musculaire (Pt), la tension TPT, le demi-temps de relaxation (1/2RT), les tensions tétaniques à 10(Po10), 20(Po20) et 50(Po50) Hz et un indice de fatigue (FI). Des échantillons du faisceau externe des muscles jumeaux du triceps furent prélevés par biopsie par aspiration. Une partie de chaque échantillon fut soumise à un examen histochimique afin de mesurer la myosine ATPasique (pH 4,30, 4,58 et 10,00) et la NADH-tétrazolium réductase et de pouvoir ainsi déterminer les zones fibreuses. Le reste de l'échantillon fut analysé afin de déceler l'activité enzymatique des déhydrogénase succinique et phosphofructokinase. D'importantes corrélations furent établies entre les zones fibreuses (ST et FI) et Po10/Po50 et FI. Par contre, pour aucun des paramètres histochimiques, on n'a relevé de lien significatif entre la Pt, la 172RT et le MVC. L'activité des SDH et PFK n'était corrélative à aucun paramètre histochimique ou psychologique. La fait de faire régulièrement des exercices d'endurance ne semble pas freiner le déclin des propriétés contractiles propres au vieillissement. Les activités enzymatiques régulatrices de substrat (PKF) et celles de marqueur (SDH) des muscles squelettiques sont plus faibles chez les personnes âgées que les sujets plus jeunes, et ce, en dépit du fait que les sujets s'adonnent à des exercices aérobiques.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aniansson, A., Grimby, G., Krotkiewska, I., Krotkiewski, M., & Rundgren, A. (1977). Muscle strength and endurance in elderly people, with special reference to muscle morphology. In Asmussen, A. & Jorgensen, A. (Eds.), International Series on Biomechanics Vol. 2A, Biomechanics VI (pp. 100110). Amsterdam: El-sevier/North Holland Biomedicai Press.Google Scholar
Aniansson, A., Grimby, G., Rundgren, A., Svanborg, A., & Orlander, J. (1980). Physical training in old men. Age and Aging, 9, 186187.CrossRefGoogle ScholarPubMed
Aniansson, A., Hedberg, M., Henning, G-B., & Grimby, G. (1986). Muscle morphology, enzymatic activity and muscle strength in elderly men: A follow-up study. Muscle and Nerve, 9, 585591.CrossRefGoogle ScholarPubMed
Aniansson, A., Ljungberg, P., Rundgren, A., & Wetterquist, H. (1984). Effect of a training progamme for pensioners on condition and muscular strength. Archives of Gerontology and Geriatrics, 3, 229241.CrossRefGoogle Scholar
Bellemare, F., Woods, J.J., Johansson, R., Bigland-Ritchie, B. (1983). Motor-unit discharge rates in maximal voluntary contractions of three human muscles. Journal of Neurophysiology, 50, 13801392.CrossRefGoogle ScholarPubMed
Bergstrom, J. (1962). Muscle electrolytes in man. Scandinavian Journal of Clinical and Laboratory Investigation, 68(suppl.), 1113.Google Scholar
Brooke, M.H., & Kaiser, K.K. (1970). Three “Myosin ATPase” systems: The nature of pH lability and sulfhydryl dependence. Journal of Histochemistry and Cytochemistry, 18, 670672.CrossRefGoogle Scholar
Cooperstein, S.J., Lazarow, A., & Kurfess, N.J. (1950). A microspectrophotometric method for the detection of Buccinate dehydrogenase. Journal of Biological Chemistry, 186, 127139.CrossRefGoogle Scholar
Cunningham, D.A., Rechnitzer, P.A., Howard, J.H., & Donner, A.P. (1987). Exercise training of men at retirement: a clinical trial. Journal of Gerontology, 42, 1723.CrossRefGoogle ScholarPubMed
Davies, C.T.M., Mecrow, I.K., & White, M.J. (1982). Contractile properties of the human triceps surae with some observations on the effects of temperature and exercise. European Journal of Applied Physiology, 49, 255269.CrossRefGoogle ScholarPubMed
Davies, C.T.M., Thomas, D.O., & White, M.J. (1986). Mechanical properties of young and elderly human muscle. Acta Medica Scandinavica, 711(suppl.), 219226.CrossRefGoogle Scholar
Eberstein, A., & Goodgold, J. (1968). Slow and fast twitch fibres in human skeletal muscle. American Journal of Physiology, 215, 535541.CrossRefGoogle ScholarPubMed
Eriksson, B.D., Gollnick, P.D., & Saltin, B. (1973). Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiologica Scandinavica, 87, 485497.CrossRefGoogle ScholarPubMed
Essen, B., & Henriksson, J. (1980). Metabolic characteristics of human type 2 skeletal muscle fibers. Muscle & Nerve, 3, 263.Google Scholar
Essen, B., Jansson, E., Henriksson, J., Taylor, A.W., & Saltin, B. (1975). Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiologica Scandinavica, 95, 153165.CrossRefGoogle ScholarPubMed
Essen-Gustavsson, B., & Borges, O. (1986). Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiologica Scandinavica, 126, 107114.CrossRefGoogle ScholarPubMed
Faulkner, J.A., Jones, D.A., Round, J.M., & Edwards, R.H.T. (1980). Dynamics of energetic processes in human muscle. In Cerettelli, P. & Whipp, B.J. (Eds.), Exercise Bioenergetics and Gas Exchange (pp. 8190). Amsterdam: Elsevier/North Holland Biomedicai Press.Google Scholar
Frontera, W.R., Meredith, C.N., O'Reilly, K.P., Knuttgen, H.G., & Evans, W.J. (1988). Strength conditioning in older men: Skeletal muscle hypertrophy and improved function. Journal of Applied Physiology, 64, 10381044.CrossRefGoogle ScholarPubMed
Gollnick, P.D., Armstrong, R.B., Saltin, B., Saubert, C.W. IV, Sembrowich, W.L., & Shepherd, R.E. (1973). Effect of training on enzyme activity and fibre composition of human skeletal muscle. Journal of Applied Physiology, 34, 107111.CrossRefGoogle ScholarPubMed
Gollnick, P.D., Armstrong, R.B., Saubert, C.W. IV, Piehl, K, & Saltin, B. (1972). Enzyme activity and fibre composition in skeletal muscle of untrained and trained men. Journal of Applied Physiology, 33, 31319.CrossRefGoogle ScholarPubMed
Gollnick, P.D., Karlsson, J., Piehl, K., & Saltin, B. (1974). Selected glycogen depletion in skeletal muscle fibres of man following sustained contractions. Journal of Physiology, 241, 5967.CrossRefGoogle ScholarPubMed
Grimby, G., & Saltin, B. (1983). The ageing muscle. Clinical Physiology, 3, 209218.CrossRefGoogle ScholarPubMed
Houston, M.E., Bentzen, H., & Larsen, H. (1979). Interrelationships between muscle adaptation and performance by detraining and retraining. Acta Physiologica Scandinavica, 105, 163170.CrossRefGoogle Scholar
Karlsson, J. (1979). Localized muscular fatigue: Role of muscle metabolism and substrate depletion. Exercise and Sport Sciences Reviews, 7, 142.CrossRefGoogle ScholarPubMed
Klein, C., Cunningham, D.A., Paterson, D.H., & Taylor, A.W. (1988). Fatigue and recovery contractile properties of young and elderly men. European Journal of Applied Physiology, 57, 684690.CrossRefGoogle Scholar
Larsson, L. (1982). Physical training effects on muscle morphology in sedentary males at different ages. Medicine and Science in Sports and Exercise, 14, 203206.CrossRefGoogle ScholarPubMed
Lexell, J., Taylor, C.C., & Sjostrom, M. (1988). What is the cause of the ageing atrophy? Total number, size and proportion of different fibre types studied in whole vastus lateralis muscle from 15 to 83 year old men. Journal of Neurological Science, 84, 275294.CrossRefGoogle ScholarPubMed
Maughan, R.J., Nimmo, N.P., & Harmon, M. (1985). The relationship between muscle myosin ATPase activity and isometric endurance in trained male subjects. European Journal of Applied Physiology, 54, 291296.CrossRefGoogle Scholar
McCarter, R. (1978). Effects of age on contraction of mammalian skeletal muscle. In Kaldor, G. & DiBettista, W.J. (Eds.), Aging in Muscle (pp. 122). New York: Raven Press.Google Scholar
Novikoff, A.B., Shin, W., & Drucker, J. (1961). Mitochondrial localization of oxidative enzymes: staining results with two tetrazolium salts. Journal of Biophysical and Biochemical Cytology, 9, 4761.CrossRefGoogle ScholarPubMed
Orlander, J., & Aniansson, A. (1980). Effects of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year old men Acta Physiologica Scandinavica, 109, 149154.CrossRefGoogle ScholarPubMed
Orlander, J., Kiessling, K.H., Larsson, L., Karlsson, J., & Aniansson, A. (1978). Skeletal muscle metabolism and ultrastructure in relation to age in sedentary men. Acta Physiologica Scandinavica, 104, 249261.CrossRefGoogle ScholarPubMed
Petrella, R.J., Cunningham, D.A., Vandervoort, A.A., & Paterson, D.H. (1989). Comparison of twitch potentiation in the gastrocnemius of young and elderly men. European Journal of Applied Physiology, 58, 315399.CrossRefGoogle Scholar
Pollock, M.L., Broid, M.J., & Kenduck, Z. (1972). Validation of the palpitation technique for estimation of training heart rate. Research Quarterly, 43, 7783.Google Scholar
Rice, C.L., Cunningham, D.A., Paterson, D.H., & Lefcoe, M.S. (1989). Arm and leg composition determined by computed tomography in young and elderly men. Clinical Physiology, 9, 207220.CrossRefGoogle Scholar
Rice, C.L., Cunningham, D.A., Taylor, A.W., & Paterson, D.H. (1988). Comparison of the histochemical and contractile properties of human triceps surae. European Journal of Applied Physiology, 58, 165170.CrossRefGoogle ScholarPubMed
Roch Norlund, A.E., & Borredaek, B. (1978). The decrease with age in the activities of enzymes of human skeletal muscle. Some observation on palmityl-carmitine formation, hexokinase activities and lactate dehydrogenase activity. Biochemical Medicine, 20, 378381.CrossRefGoogle Scholar
Shonk, C.E., & Boxer, E.E. (1964). Enzyme patterns in human tissue 1. Method for determination of glycolytic enzymes. Cancer Research, 24, 709721.Google ScholarPubMed
Sica, R.E.P., Sanz, O.P., & Colombi, A. (1976). The effects of ageing upon the human soleus muscle. Medicine (Buenos Aries), 36, 443446.Google ScholarPubMed
Suominen, H., & Heikkinen, E. (1975). Enzyme activities in muscle and connective tissue of M. vastus lateralis in habitually training and sedentary 33–70 year old men. European Journal of Applied Physiology, 34, 249254.CrossRefGoogle Scholar
Suominen, H., Heikkinen, E., Liesen, H., Michel, D., & Hollmann, W. (1977). Effects of 8 weeks' endurance training on skeletal muscle metabolism in 56–70 year-old sedentary men. European Journal of Applied Physiology, 37, 173180.CrossRefGoogle ScholarPubMed
Taylor, A.W., Lavoie, S., Lemieux, G., Dufresne, C., Skinner, J.S., & Vallée, J. (1978). Effects of endurance training on the fibre area and enzyme activities of skeletal muscle of French-Canadians. In Landry, F. & Orban, War (Eds.), 3rd International Symposium on Biochemistry of Exercise (pp. 267278). Miami: Symposium Specialists Inc.Google Scholar
Tesch, P., & Karlsson, J. (1985). Muscle fibre types and sizes in trained and untrained muscles of elite athletes. Journal of Applied Physiology, 59, 17161720.CrossRefGoogle Scholar
Thomas, S.G., Cunningham, D.A., Rechnitzer, P.A., Donner, A.P., & Howard, J.H. (1985). Determinants of the training response in elderly men. Medicine and Science in Sports and Exercise, 17, 667672.CrossRefGoogle ScholarPubMed
Thomas, T.R., Londeree, B.R., Gerhardt, K.O., & Gehrke, W.C. (1978). Fatty acid pattern and cholesterol in skeletal muscle of men aged 27 to 73. Mechanisms of Ageing & Development, 8, 429434.CrossRefGoogle Scholar
Vandervoort, A.A., & McComas, A.J. (1986). Contractile changes in opposing muscles of the human ankle joint with ageing. Journal of Applied Physiology, 61, 361367.CrossRefGoogle Scholar