Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:29:44.793Z Has data issue: false hasContentIssue false

Aging, Smoking and Hemispheric EEG Asymmetry

Published online by Cambridge University Press:  29 November 2010

Verner J. Knott
Affiliation:
University of Ottawa/Royal Ottawa Hospital and Institute of Mental Health Research
Anne Harr
Affiliation:
University of Ottawa/Royal Ottawa Hospital and Institute of Mental Health Research

Abstract

As previous research has shown central nicotinic receptors to (a) be asymmetrical, (b) decline with age, and (c) be more abundant in smokers, quantified EEG indices of hemispheric asymmetry were employed to assess whether smoker/non-smoker status affected the aging brain and whether the aging brain demonstrated an altered response to acute smoking/nicotine. Forty healthy volunteers participated, including 20 young (18–39 years) and 20 elderly (64–81 years) adults. Half of the subjects in each age category were lifelong non-smokers and half were cigarette smokers with average smoking histories of 9.3 and 52.0 years for young and elderly respectively. Inter-hemispheric theta and alpha asymmetry indices illustrated greater left hemisphere power (relative to right) in elderly adults, while the reverse trend was seen in young adults. Smokers and non-smokers both showed similar aging trends but differed with respect to their presence in frontal and posterior regions. Intra-hemispheric asymmetry indices, particularly with alpha activity, illustrated a reduced anterior-posterior gradient of power distribution in the elderly. Acute smoking increased slow (delta) and fast (beta) inter-hemispheric indices but only in elderly smokers. Smoking also altered the intra-hemispheric balance of slow wave activity in both age groups of smokers. The results are discussed in relation to normal and pathological aging.

Résumé

Vu que la recherche préalable démontre les récepteurs nicotiniques étant (a) asymétriques, (b) moins abondants avec âge et (c) plus abondants en fumeurs, des indices d'EEG quantifiés ont été utilisé pour évaluer si ou non être fumeur/nonfumeur affecte le cerveau veillissant et si ou non celui-ci démontre une reaction modifiée par la présence vive du nicotine. Quarante volontaires en bonne santé ont participé, ci-inclus 20 jeunes adultes (âgé de 18–39 ans) et 20 personnes âgées (âgé de 64–81 ans). La moitié des sujets dans chaque groupe d'âge se trouvaient nonfumeurs à vie tandis que l'autre moitié étaient fumeurs avec 9,3 et 52 années de tabagisme par groupe d'âge respectivement. Les indices d'asymétrie inter-hémisphérique theta et alpha ont demontré plus de puissance (μV2) dans l'hémisphere gauche (comparé à la droite) en sujets âgés tandis qu'une tendance inverse fût notée en sujets jeunes. Fumeurs et nonfumeurs ont démontré des tendances semblables en vieillissement mais différents au niveau du site d'enregistrement. Les indices d'asymétrie intra-hémisphérique ont démontré un gradient de distribution de puissance réduite dans les sujets âgés. Une seule cigarette préférée, fumée après abstention pendant plusieurs heures, a affecté les indices interhémisphériques delta en fumeurs âgés et les indices intrahémisphériques beta en fumeurs jeunes et âgés. Les résultats sont discutés, relatifs au vieillissement normal et pathologique.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abt, K. (1990). Statistical aspects of neurophysiologic topography. Journal of Clinical Neurophysiology, 7, 519534.CrossRefGoogle ScholarPubMed
Barmon, A., Decker, M., Williams, M., & Arnerie, S. (1995). Psychotherapeutic potential of selective neuronal nicotinic acetylcholine receptor ligands. In Domino, E. (Ed.), Brain imaging of nicotine and tobacco smoking (pp. 311334). Ann Arbor, MI: NPP Books.Google Scholar
Benwell, M., Balfour, D., & Anderson, J. (1988). Evidence that tobacco smoking increases the density of (–) [3H] nicotine binding sites in human brain. Journal of Neurochemistry, 50, 12431247.CrossRefGoogle ScholarPubMed
Bossé, R., & Rose, C. (Eds.). (1984). Smoking and aging. Lexington: Lexington Books.Google Scholar
Brenner, D., Kukull, W., van Belle, G., Bowen, J., McCormick, W., Teri, L., & Larson, E. (1993). Relationship between cigarette smoking and Alzheimer's disease in a population-based case-control study. Neurology, 43, 293300.CrossRefGoogle Scholar
Buccafusco, J., & Jackson, W. (1991). Beneficial effects of nicotine adminstered prior to a delayed matching-to-sample task in the young and aged monkeys. Neurobiology of Aging, 12, 233238.CrossRefGoogle Scholar
Buchshbaum, M., Cappelletti, J., Coppola, R., Rigel, F., King, A., & Van Kammen, D. (1982). New methods to determine the CNS effects of antigeriatric compounds: EEG topography and glucose use. Drug Development Research, 2, 489496.CrossRefGoogle Scholar
Domino, E., & Matsuoka, S. (1994). Effects of tobacco smoking on the topographic EEG. I. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 18, 879889.CrossRefGoogle ScholarPubMed
Domino, E., Riskalla, M., Zhang, Y., & Kim, E. (1992). Effects of tobacco smoking on the topographic EEG. II. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 16, 463482.CrossRefGoogle ScholarPubMed
Duffy, F., McAnuity, G., & Albert, M. (1993). The pattern of age-related differences in electrophysiological activity of healthy males and females. Neurobiology of Aging, 14, 73148.CrossRefGoogle ScholarPubMed
Dustman, R., LaMarche, J., Cohn, M., Shearer, D., & Talone, J. (1985). Power spectral analysis and cortical coupling of EEG for young and old normal adults. Neurobiology of Aging, 6, 193198.CrossRefGoogle Scholar
Dustman, R., Shearer, D., & Emmerson, R. (1993). EEG and event-related potentials in normal aging. Progress in Neurobiology, 41, 369401.CrossRefGoogle ScholarPubMed
Fujishiro, K., Kodaira, K., Wada, T., & Tsukiyama, F. (1995). Effects of smoking a tobacco cigarette on carotid and cerebral blood flow. In Domino, E. (Ed.), Brain imaging of nicotine and tobacco smoking (pp. 123136). Ann Arbor, MI: NPP Books.Google Scholar
Gilbert, D. (1987). Effects of smoking and nicotine on EEG lateralization as a function of personality. Personality and Individidual Differences, 8, 933941.CrossRefGoogle Scholar
Gilbert, D., Robinson, J., Chamberlin, C., & Spielberger, C. (1989). Effects of smoking/nicotine on anxiety, heart rate and lateralization of EEG during a stressful movie. Psychophysiology, 26, 311320.CrossRefGoogle ScholarPubMed
Glick, S., Ross, D., & Hough, L. (1982). Lateral asymmetry of neurotransmitters in human brain. Brain Research, 234, 5363.CrossRefGoogle ScholarPubMed
Greenhouse, S., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 20, 515532.Google Scholar
Ingvar, D., & Rosen, J. (1979). EEG-related cerebral metabolism and blood flow. Pharmacopsychiatry, 12, 200209.CrossRefGoogle ScholarPubMed
Jacquy, J., Charles, P., Piraux, A., & Noel, G. (1980). Relationship between the electroencephalogram and the rheoencephalogram in the normal young adults. Neuropsychobiology, 6, 341348.CrossRefGoogle Scholar
John, E., Prichep, L., & Easton, P. (1987). Normative data banks and neurometrics: Basic concepts, methods and results of norm constructions. In Gevins, A., Rémond, A. (Eds.), Methods of analysis of brain electric and magnetic fields. EEG Handbook (revised series, Vol. 1) (pp. 449495). Amsterdam: Else vier.Google Scholar
Katayama, S., Hirata, K., Tanaka, H., Yamazaki, K., Fujikane, M., & Ichimaru, Y. (1995). Efficacy of transdermal nicotine in dementia: a study using event-related potentials and a middle latency response. In Domino, E. (Ed.), Brain imaging of nicotine and tobacco smoking (pp. 289302). Ann Arbor, MI: NPP Books.Google Scholar
Kinsborne, M. (1980). Cognition and the brain. In Wittrock, M. (Ed.), The brain and psychology (pp. 325343). New York: Academic Press.CrossRefGoogle Scholar
Knott, V. (1988). Dynamic EEG changes during cigarette smoking. Neuropsychobiology, 19, 5460.CrossRefGoogle ScholarPubMed
Knott, V. (1989a). Effects of low-yield cigarettes on electroencephalographic dynamics. Neuropsychobiology, 21, 216222.CrossRefGoogle ScholarPubMed
Knott, V. (1989b). Brain electrical imaging the dose-response effect of cigarette smoking. Neuropsychobiology, 22, 236242.CrossRefGoogle ScholarPubMed
Knott, V. & Harr, A. (1995). Smoking-induced alterations in brain electrical profiles: Normalization or enhancement? In Clarke, P., Quick, M., Adlkofer, F., Thurau, K. (Eds.), Effects of nicotine on biological systems II (pp. 181187). Basel: Birkhäuser.CrossRefGoogle Scholar
Knott, V., & Venables, P. (1977). EEG alpha correlates of nonsmokers, smokers, smoking and smoking deprivation. Psychophysiology, 14, 150156.CrossRefGoogle ScholarPubMed
LeHouezec, J., & Benowitz, N. (1991). Basic and clinical pharmacology of nicotine. Clinical Chest Medicine, 12, 681699.CrossRefGoogle Scholar
Levin, E. (1992). Nicotine systems and cognitive function. Psychopharmacology, 108, 417431.CrossRefGoogle ScholarPubMed
London, F. Mapping the cerebral metabolic responses to nicotine. In Domino, E. (Ed), Brain imaging of nicotine and tobacco smoking (pp. 153166). Ann Arbor, MI, NPP Books.Google Scholar
Mathew, R. & Wilson, W. (1995). Acute pharmacological effects of tobacco smoking and nicotine on cerebral blood flow. In Domino, E. (Ed.), Brain imaging of nicotine and tobacco smoking (pp. 109122). Ann Arbor, MI: NPP Books.Google Scholar
Meyer, J., Shirai, T., Muramatsu, K., & Mortel, K. (1995). Effects of chronic cigarette smoking and abstinence on cerebral perfusion among neurologically normal volunteers. In Domino, E. (Ed.), Brain imaging of nicotine and tobacco smoking (pp. 137152). Ann Arbor, MI: NPP Books.Google Scholar
Muller, H., & Grad, B. (1974). Clinical psychological, electroencephalographic and adrenocortical relationships in elderly psychiatric patients. Journal of Gerontology, 29, 2838.CrossRefGoogle ScholarPubMed
Nagata, K., Shinohara, T., Kanno, T., Hatazawu, I., & Domino, E. (1995). Effects of tobacco cigarette smoking on cerebral blood flow in normal adults. In Domino, E. (Ed.), Brain imaging of nicotine and tobacco smoking (pp. 95108). Ann Arbor, MI: NPP Books.Google Scholar
Newhouse, P., & Hughes, J. (1991). The role of nicotine and nicotinic mechanisms in neuropsychiatrie disease. British Journal of Addiction, 86, 521526.CrossRefGoogle Scholar
Newhouse, P., Sunderland, T., Narang, P., Mellow, A., Fertis, J., Lawlor, B., & Murphy, D. (1990). Neuroendocrine, physiologic and behavioural response following intravenous nicotine in non-smoking healthy volunteers and in patients with Alzheimer's Disease. Psychoneuroendocrinology, 15, 471484.CrossRefGoogle Scholar
Newhouse, P., Sunderland, T., Tariot, P., Blumhardt, C., Weingartner, H., Mellow, A., & Murphy, D. (1988). Intravenous nicotine in Alzheimer's disease: A pilot study. Psychopharmacology, 95, 171175.CrossRefGoogle ScholarPubMed
Nordberg, A., Adem, A., Hardy, J., & Winblad, B. (1988). Changes in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neuroscience Letters, 86, 317321.CrossRefGoogle ScholarPubMed
Nordberg, A., & Alafuzoff, I. (1992). Nicotine and muscorinic subtypes in the human brain: changes with aging and dementia. Journal of Neuroscience Research, 31, 103111.CrossRefGoogle ScholarPubMed
Nordberg, A., Hartvig, P., & Lilja, A. (1990). Decreased uptake and binding of C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. Journal of Neurological Transmission, (P-D sect.), 2, 215224.Google Scholar
Norton, R., Brown, K., & Howard, R. (1992). Smoking, nicotine dose and the lateralization of electrocortical activity. Psychopharmacology, 108, 473479.CrossRefGoogle ScholarPubMed
Nybäck, H., Halldin, C., Åhlin, A., Curvali, M., & Eriksson, L. (1994). PET studies of the uptake of (S) and (R) [11C] nicotine in the human brain: Difficulties in visualizating specific receptor binding in vivo. Psychopharmacology, 115, 3136.CrossRefGoogle Scholar
Nybäck, H., Nordberg, A., Långström, B., Halldin, C., Ahlin, A., Swahn, C., & Sedvall, G. (1987). Attempts to visualize nicotinic receptors in the brain of monkey man by positron emission tomography. Progress in Brain Research, 79, 313319.CrossRefGoogle Scholar
Pentillä, M., Partanen, V., Soininen, H., & Riekkinen, P. (1985). Quantitative analysis of occipital EEG in different stages of Alzheimer's disease. Electroencephalography and Clinical Neurophysiology, 60, 16.CrossRefGoogle Scholar
Pritchard, W. (1991). Electroencephalographic effects of cigarette smoking. Psychopharmacology, 104, 485490.CrossRefGoogle ScholarPubMed
Riekkinen, E., Riekkinen, P., Buzsuki, E., Soininen, H., & Partanen, J. (1991). The cholinergic system and EEG slow waves. Electroencephalography and Clinical Neurophysiology, 78, 8996.CrossRefGoogle ScholarPubMed
Riekkinen, P., Riekkinen, M., & Serviö, J. (1993). Effects of nicotine on neocortical electrical activity in rats. Journal of Pharmacology & Experimental Therapeutics, 267, 776784.Google ScholarPubMed
RomaneUi, L., Ohman, B., Adem, A., & Nordberg, A. (1988). Subchronic treatment of rats with nicotine: Interconversion of nicotine receptor subtypes. European Journal of Pharmacology, 148, 289291.CrossRefGoogle Scholar
Sahakian, B., Jones, G., Levy, R., Gray, J., & Warburton, D. (1989). The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. British Journal of Psychiatry, 154, 797800.CrossRefGoogle ScholarPubMed
Schwarz, R., & Kellar, K. (1983). Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo. Science, 220, 214220.CrossRefGoogle Scholar
Silverstein, A. (1982). Two-and four-subtest short forms of the Wechsler Adult Intelligence Scale-Revised. Journal of Clinical Psychology, 5, 415418.CrossRefGoogle Scholar
Stuss, D., & Benson, D. (Eds.). (1986). The frontal lobes. New York: Raven Press.Google Scholar
Summers, K., Cuadra, G., Naritoku, D., & Giacobini, E. (1994). Effects of nicotine on levels of acetylcholine and biogenic amines in rat cortex. Drug Development Research, 31, 108119.CrossRefGoogle Scholar
Tolonen, U., & Sulg, I. (1981). Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationships between EEG and CBF in brain infarction. Electroencephalography and Clinical Neurophysiology, 51, 177185.CrossRefGoogle ScholarPubMed
Tucker, D., & Williamson, P. (1984). Asymmetric neural control systems in human self-regulation. Psychological Review, 91, 182215.CrossRefGoogle ScholarPubMed
van Duijn, C., & Hofman, A. (1991). Relation between nicotine intake and Alzheimer's disease. British Medical Journal, 302, 14911494.CrossRefGoogle ScholarPubMed
Wesnes, K., & Warbuton, D. (1983). Smoking, nicotine and human performance. Pharmacology & Therapeutics, 21, 189208.CrossRefGoogle ScholarPubMed
Widzowski, D., Cregan, E., & Bialobok, P. (1994). Effects of nicotinic agonist and antagonists on spatial working memory in normal adult and aged rats. Drug Development Research, 31, 2431.CrossRefGoogle Scholar