Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T18:12:09.984Z Has data issue: false hasContentIssue false

Age Differences in Mood: Structure, Mean Level, and Diurnal Variation

Published online by Cambridge University Press:  29 November 2010

J. Kevin McNeil
Affiliation:
Saint John Regional Hospital
M. J. Stones
Affiliation:
Memorial University of Newfoundland
Albert Kozma
Affiliation:
Memorial University of Newfoundland
David Andres
Affiliation:
Concordia University

Abstract

In a sample of 1449 adults, divided by age into young, middle-age, and old, mood was found to consist of two age invariant components, vigour and affect. Factor structure differed by age for affect but not vigour. For old adults, two unipolar affect factors were obtained, whereas one bipolar affect factor was obtained for the two younger groups. From these factor analyses a mood scale (the Memorial University Mood Scale, the MUMS) was developed and its predictive validity and reliability established for all age groups. Using the MUMS, mean level differences by age were found in both vigour and affect, as well as a measure of globed mood, with the old adults higher on all three measures. Age invariant, diurnal patterns were found for both vigour and affect. Vigour followed an inverted U-shaped diurnal pattern and affect a primarily linear pattern, suggestive of appraisals of somatic state and environmental conditions, respectively.

Résumé

Les résultats d'un sondage mené auprès de 1449 adultes, répartis selon les groupes d'âge suivants: jeune, âge moyen et vieux, ont démontré que l'humeur compte deux composantes invariantes liées à l'âge, soit la vigueur et l'affect. La structure factorielle variait selon l'âge dans le cas de l'affect, mais non de la vigueur. Chez les adultes plus âgés, l'étude a établi deux facteurs unipolaires de l'affect, tandis que dans les deux autres groupes, un facteur bipolaire de l'affect a été obtenu. De ces analyses factorielles, une échelle de l'humeur (Memorial Mood Scale, ou MUMS) a été élaborée ainsi qu'une valeur prévisionnelle et fiable pour tous les groupes d'âge. Grâce à cette échelle, des différences moyennes de niveau par âge ont été observées en ce qui touche la vigueur et l'affect, et l'humeur générale a pu être mesurée. Les résultats étaient plus élevés chez le groupe des plus âgés sur ces trois plans. La vigueur et l'affect ont révélé des schémas invariants selon l'âge et le moment de la journée. La vigueur suivait un schéma diurnal inversé en forme de U, tandis que l'affect présentait un schéma principalement linéaire, ce qui suggère des évaluations de l'état somatique et des conditions environnantes, respectivement.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, F.M., & Withey, S.B. (1976). Social indicators of well-being: Americans' perceptions of life quality. New York: Plenum.CrossRefGoogle Scholar
Bohlin, G., & Kjellberg, A. (1975). Self-reported arousal. Factorial complexity as a function of the subject's arousal level. Scandinavian Journal of Psychology, 16, 203208.CrossRefGoogle Scholar
Bradburn, N.M. (1969). The structure of psychological well-being. Chicago: Aldine.Google Scholar
Bradburn, N.M., & Caplovitz, D. (1965). Reports on happiness. Chicago: Aldine.Google Scholar
Bradburn, N.M., & Noll, C.E. (1969). The structure of psychological well-being. Chicago: Aldine.Google Scholar
Campbell, A., Converse, P.E., & Rodgers, W.L. (1976). The quality of American life. New York: Russell Sage.Google Scholar
Cappeliez, P., & Veillette, C. (1992). L'Échelle de l'humeur de l'Université Memorial: étude psychométrique avec une population francophone. Science et Comportement, 22, 179191.Google Scholar
Carmines, E.G., & Mclver, J.P. (1981). Analyzing models with unobserved variables: Analysis of covariance structures. In Borhnstedt, G.W. and Borgatta, E.F. (Eds.), Social measurement: Current issues. Beverly Hills: Sage.Google Scholar
Clements, P.R., Hafer, M.D., & Vermillion, M.E. (1976). Psychometric, diurnal, and electrophysiological correlates of activation. Journal of Personality and Social Psychology, 33, 387394.CrossRefGoogle ScholarPubMed
Cruickshank, P.J. (1984). A stress and arousal mood scale for low vocabulary subjects: A reworking of Mackay et al. (1978). British Journal of Psychology, 75, 8994.CrossRefGoogle ScholarPubMed
Fengler, A.P., Little, V.C., & Danigelis, N.L. (1983). Correlates and dimensions of happiness in urban and nonurban settings. International Journal of Aging and Human Development, 16, 5365.CrossRefGoogle Scholar
Folkman, S., Lazarus, R.S., Pimley, S., & Novacek, J. (1987). Age differences in stress and coping processes. Psychology and Aging, 2, 171184.Google Scholar
Froberg, J.E. (1977). Twenty-four-hour patterns in human performance, subjective and physiological variables and differences between morning and evening active subjects. Biological Psychology, 5, 119134.CrossRefGoogle ScholarPubMed
Gilmore, A.J.J. (1972). Personality in the elderly: Problems in methodology. Age and Ageing, 1, 227232.CrossRefGoogle ScholarPubMed
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kim., J-O., & Mueller, C.W. (1978). Factor analysis: Statistical methods and practical issues. Beverly Hills: Sage.CrossRefGoogle Scholar
Kozma, A., & Stones, M.J. (1987). Social desirability in measures of subjective well-being: A systematic evaluation. Journal o f Gerontology, 42, 5659.Google Scholar
Kozma, A., Stones, M.J., & McNeil, J.K. (1991). Psychological well-being in the elderly. Toronto: Butterworths.Google Scholar
Liang, J., Van Tran, T., & Markides, K.S. (1988). Differences in the structure of Life Satisfaction Index in three generations of Mexican Americans. Journals of Gerontology, 43, Sl8.Google ScholarPubMed
Linton, M., Gallo, P.S., & Logan, C.A. (1975). The practical statistician: Simplified handbook of statistics. California: Brooks/Cole.Google Scholar
MacKay, C., Cox, T., Burrows, G., & Lazzerini, T. (1978). An inventory for the measurement of self-reported stress and arousal. British Journal of Social and Clinical Psychology, 17, 283284.CrossRefGoogle ScholarPubMed
McNeil, J.K. (1986). Mood: Measurement, diurnal variation, and age effects. Unpublished doctoral dissertation, Memorial University of Newfoundland, St. John's, Newfoundland.Google Scholar
McNeil, J.K, & Harsany, M. (1989). An age difference view of depression. Canadian Psychology, 30, 103110.CrossRefGoogle Scholar
McNeil, J.K., Stones, M.J., & Kozma, A. (1986). Subjective well-being in later life: Issues concerning measurement and prediction. Social Indicators Research, 18, 3570.Google Scholar
Meddis, R. (1972). Bipolar factors in mood adjective checklists. British Journal of Social and Clinical Psychology, 11, 178184.Google Scholar
Nowlis, V. (1965). Research with the mood adjective check list. In Tomkins, S.S. & Izard, C.E. (Eds.), Affect, cognition and personality (pp. 352389). New York: Springer.Google Scholar
Russell, J.A. (1979). Affective space is bipolar. Journal of Personality and Social Psychology, 37, 345356.Google Scholar
Russell, J.A., (1980). A circumflex model of affect. Journal of Personality and Social Psychology, 37, 11611178.Google Scholar
Russell, J.A. (1983). Pancultural aspects of the human conceptual organization of emotions. Journal of Personality and Social Psychology, 45, 12811288.CrossRefGoogle Scholar
Russell, J.A., & Ridgeway, D. (1983). Dimensions underlying children's emotions. Developmental Psychology, 19, 795804.Google Scholar
Stacey, C.A., & Gatz, M. (1991). Cross-sectional age differences and longitudinal change on the Bradburn Affect Balance Scale. Journals of Gerontology: Psychological Sciences, 46, P7678.CrossRefGoogle ScholarPubMed
Statistics Canada. (1983). Postcensal estimates of population by sex, age and marital status, Canada and provinces, June 1, 1983. Ottawa: Minister of Supply and Services Canada.Google Scholar
Thayer, R.E. (1967). Measurement of activation through self-report. Psychological Reports, 20, 663678.Google Scholar
Tiller, D.K., & Campbell, J.F. (1984). Response scale effects on the factor structure underlying adjective check lists: Contributions to a taxonomy of mood. Paper presented at the annual meeting of the Canadian Psychological Association, Ottawa, 1984.Google Scholar
Walton, T.R., Tinklenberg, J.R., Doyle, C.M., Horvath, T.B., & Kopell, B.S. (1976). Mood states and 24-hour cardiac monitoring. Journal of Psychsomatic Research, 20, 179186.Google Scholar
Watson, D., Clark, L.A., & Tellegen, A. (1984). Cross-cultural convergence in the structure of mood: A Japanese replication and a comparison with U.S. findings. Journal of Personality and Social Psychology, 47, 127144.CrossRefGoogle Scholar
Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219235.CrossRefGoogle Scholar
Watts, C., Cox, T., & Robson, J. (1983). Morningness-eveningness and diurnal variations of self-reported mood. The Journal of Psychology, 113, 251256.Google Scholar
Zevon, M.A., & Tellegen, A. (1982). The structure of mood change: An idiographic/no-mothetic analysis. Journal of Personality and Social Psychology, 43, 111122.Google Scholar