Published online by Cambridge University Press: 29 November 2010
Data from the Ontario Longitudinal Study of Aging were analyzed to examine the associations of the independent variables income, income change, education, smoking and perceived health with the dependent variable mortality during a ten year follow-up beginning in 1969. The analyses investigate the associations of the independent variables with deaths, with other causes of attrition and with all causes of attrition. The results indicate that smoking is the strongest predictor of mortality, and income is the strongest socioeconomic predictor. The analyses also show that perceived health measured prior to the mortality follow-up masks the association between the independent variables and mortality. Since the exclusion of the perceived health variable did not appreciably reduce the fit of the models, it was omitted from further analyses. The distributions of mortality for the various independent variables differed appreciably between models using deaths and all causes, but the bivariate and multivariate associations between variables were relatively unaffected by the alternative methods of operationalizing the dependent variable.
Des données extraites du Ontario Longitudinal Study of Aging sont analysées dans le but d'examiner les liens entre une série de variables indépendantes, dont le revenu, le changement du revenu, le niveau d'étude, la cigarette, la perception de la santé, et une variable dépendante, celle de la mortalité, ceci pendant dix ans, à partir de 1969. L'analyse cherche à établir le lien qui pourrait exister entre les variables indépendantes et la mortalité, d'autres causes attribuées à l'attrition et toutes les causes d'attrition. Selon les résultats, la cigarette est le meilleur déterminant lorsqu'il s'agit de prédire la mort, et le revenu en est le meilleur déterminant socio-économique. Les analyses indiquent également que la perception de la santé telle que mesurée avant le suivi sur la mortalité masque le lien entre les variables indépendantes et la mortalité. Puisque l'exclusion de cette variable ne changeait sensiblement pas la valeur relative des modèles, elle a désormais été exclue des analyses. Les distributions de la mortalité au niveau des diverses variables indépendantes varient considérablement selon les modèles lorsque la mort et toutes les causes entrent en ligne de compte, mais les liens bivariés et multivariés entre les variables demeurent relativement non affectés par les différentes méthodes visant à opérationnaliser la variable dépendante.