Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T20:21:16.336Z Has data issue: false hasContentIssue false

A Primer on Ernst Abbe for Frege Readers

Published online by Cambridge University Press:  01 January 2020

Extract

Setting out to understand Frege, the scholar confronts a roadblock at the outset: We just have little to go on. Much of the unpublished work and correspondence is lost, probably forever. Even the most basic task of imagining Frege's intellectual life is a challenge. The people he studied with and those he spent daily time with are little known to historians of philosophy and logic. To be sure, this makes it hard to answer broad questions like: ‘Who influenced Frege?’ But the information vacuum also creates local problems of textual interpretation. Say we encounter a sentence that may be read as alluding to a scientific dispute. Should it be read that way? To answer, we'd need to address prior questions. Is it reasonable to think Frege would be familiar with the issue? Deep or superficial familiarity? Would he expect his readers to catch the allusion? Can he be expected to anticipate certain objections? Can people he knows be expected to press those objections? A battery of such questions arise, demanding a richer understanding of Frege's environment.

Type
Research Article
Copyright
Copyright © The Authors 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, Ernst. 1863. ‘Über die Gestezmässigkeit der Vertheilung der Fehler bei Beobachtungsreihen.’ Habilitationsschrift, Jena ( = Gess. Abh. Ü, 55-81). Page references to the reprint. Selections translated as ‘On the conformity-toa-law of the distribution of errors in a series of observations,’ in Herbert David and Anthony Edwards, ed., Annotated Readings in the History of Statistics. Berlin: Springer. 2001.Google Scholar
Abbe, Ernst. 1873. ‘Beiträge zur Theorie des Mikroskopes und der mikroskopische Wahrnehmung.Archiv für mikroskopische Anatomie 9: 413-68 (= Gess. Abh. I, 45-100). Page references to reprinting.Google Scholar
Abbe, Ernst. 1874. ‘A contribution to the theory of the microscope, and the nature of microscopic vision.Proceedings of the Bristol Naturalists Society 1: 20﹛﹜-258. Translated and annotated version of Abbe (1873) by H. E. Fripp.Google Scholar
Abbe, Ernst. 1878. ‘Über Blutkörper-zählung.’ Sitzungsberichte der fenaischen Gesellschaftfür Medizin und Naturwissenschaft, 9S….105 (= Gess. Abh. I, 173-80). Page references to the reprinting.Google Scholar
Abbe, Ernst. 1879. ‘On new methods for improving spherical correction applied to the construction of wide-angled object-glasses.Journal of the Royal Microscopical Society 2(2): 812-24.Google Scholar
Abbe, Ernst. 1880. ‘Ueber die Grenzen die geometrischen Optik.’ Sitzungsberichte der fenaischen Gesellschaft für Medicin und Naturwissenschaft, 71-109 (= Gess. Abh., 273-312). Page references to reprinting.Google Scholar
Abbe, Ernst. 1887. ‘On improvements of the microscope with the aid of new kinds of optical glass.Journal of the Royal Microscopical Society 6(2): 2035.Google Scholar
Abbe, Ernst. 1895. ‘Berechnung des wahrscheinlichen Fehlers bei der Bestimmung von Mittelwerthen durch abzählen.’ In Methodik der Untersuchungen bei der Plankton-Expedition der Humboldt-Stiftung, ed. V. Hensen, 166-69. Kiel and Leipzig(= Gess. Abh. II, 230-35). Page references to the reprinting.Google Scholar
Abbe, Ernst. 1906. Gesammelte Abhandlungen III: Vorträge, Reden und Schriften sozialpolitischen und verwandten Inhalts. Jena: Gustav Fischer.Google Scholar
Abbe, Ernst. 1906a. ‘Die volkswirschaftliche Bedeutung der Verkürzung des industriellen Arbeitstages, 2 Vorträge gehalten in der Staatswissenschaftlichen Gessellschaft zu Jena, 1901.’ In Ernst Abbes Gesammelte Abhandlungen III: Vorträge, Reden und Schriften sozialpolitischen und verwandten Inhalts. Jena: Gustav Fisher.Google Scholar
Abbe, Ernst. 1986. Briefe an seine ]ugend-und Studienfreunde Carl Martin und Harald Schütz. Berlin: Akademie.Google Scholar
Ahlfors, Lars. 1953. ‘Development of the theory of conformal mapping and Riemann surfaces through a century.Contributions to the Theory of Riemann Surfaces, Annals of Mathematics Studies 30: 313.Google Scholar
Anonymous, . 1886. ‘Karl Snell.Zeitschrift für mathematischen und naturwissenschaftüchen Unterricht 19: 396-97.Google Scholar
Apelt, Ernst. 1854. Die Theorie der Induction. Leipzig: W. Engelmann.Google Scholar
Arnsberg, Paul. 1983. Die Geschichte der Frankfurter ]uden seit der Französischen Revolution, vol. 2. Frankfurt: Kuratorium für Jüdische Geschichte e.V.Google Scholar
Artin, Emil. 1957. Geometric Algebra. New York: Wiley-Interscience.Google Scholar
Auerbach, F. 1918. Ernst Abbe: Sein Leben, sein Wirken, seine Persönlichkeit. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Ball, Robert Stawell. 1871. ‘The theory of screws-a geometrical study of the kinematics, equilibrium, and small oscillations of a rigid body.Transactions of the Royal Irish Academy 25: 137217.Google Scholar
Ball, Robert Stawell. 1876. The Theory of Screws -A Study in the Dynamics of a Rigid Body. Dublin: Hodges, Foster and Co.Google Scholar
Bogehold, Hans. 1898. Historisch-kritische Darstellung der Konstruktion der Fläche zweiter Ordnung aus neun Punkten. PhD thesis, Jena.Google Scholar
Bradbury, S. 1967. The Evolution of the Microscope. Oxford: Pergamon Press.Google Scholar
Buchdahl, Gerd. 1973. ‘Leading principles and induction: The methodology of Matthias Schlieden.’ In Foundations of Scientific Method: The Nineteenth Century, ed. Giere, Ronald and Westfall, Richard, 2352. Bloomington: Indiana University Press.Google Scholar
Buenstorf, Guido, and Murmann, Johann. 2005. ‘Ernst Abbe's scientific management: Theoretical insights from a nineteenth-century dynamic capabilities approach.Industrial and Corporate Change 14(4): 543-78.Google Scholar
Butzer, Paul, and Stark, Eberhard. 1986. “'Riemann's example” of a continuous nondifferentiable function in the light of two letters (1865) of Christoffel to Prym.’ Bulletin de Ia Société Mathématique de Belgique 48: 4572.Google Scholar
Cahan, David. 1996. ‘The Zeiss Werke and the ultramicroscope: The creation of a scientific instrument in context.’ In Scientific Credibility and Technical Standards in 19th and Early 20th Century Germany and Britain, ed. Buchwald, Jed Z., 67115. Dordrecht: Kluwer.Google Scholar
Clebsch, Alfred. 1872. ‘Zum Gedächtnis an Julius Plucker.Abhandlungen der Gesellschaft der Wissenschaften zu Gottingen 15: 140.Google Scholar
Crowe, Michael. 1967. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. Notre Dame: Notre Dame University Press.Google Scholar
Crowe, Michael. 1970. ‘Herman Hankel.’ In Dictionary of Scientific Biography. New York: Charles Scribner's Sons.Google Scholar
Dale, Andrew I. 1991. A History of Inverse Probability from Thomas Bayes to Karl Pearson. New York: Springer.Google Scholar
Daniel, Thomas. 1997. The Captain of Death: The Story of Tuberculosis. Rochester, NY: University of Rochester Press.Google Scholar
Daston, Lorraine. 1994. ‘How probabilities came to be objective and subjective.Historia Mathematica 21: 330-44.Google Scholar
Dathe, Uwe. 1992. Frege in fena. Eine Untersuchung von Gottlob.Freges Jenaer Mikropklima zwischen 1869 und 1918. PhD thesis, University of Leipzig.Google Scholar
Dathe, Uwe. 1993. ‘Theoretische Quellen des frühen Frege.’ In Philosophie und Logik: Frege-Kolloquien Jena 1989/91, ed. Stelzner, Werner, 3944. Berlin: Walter de Gruyter.Google Scholar
Dathe, Uwe. 1997a. ‘Gottlob Frege und Johannes Thomae: Zum Verhaltniss zweier Jenaer Mathematiker.’ In Frege in fena, ed. Gabriel, Gottfried and Kienzler, Wolfgang, 87103. Würzburg: Königshausen & Neumann.Google Scholar
Dathe, Uwe. 1997bAnnotated bibliography.’ In Frege in Jena: Beiträge zur Spurensicherung. Gabriel, Gottfried und Kienzler, Wolfgang (eds), 149-59. Würzburg: Königshausen & Neumann.Google Scholar
David, Herbert, and Edwards, Anthony, eds. 2001. Annotated Readings in the History of Statistics. Berlin: Springer.Google Scholar
Dedekind, Richard. 1888 I 1901. The Nature and Meaning of Numbers. Chicago: Open Court. Trans. W. Behman. Originally published 1888, translated 1901. Page reference to the 1963 reprint Essays on the Theory of Numbers, Mineola, NY: Dover.Google Scholar
Dohrn, Anton. 1932/33. ‘Correspondence with F.A. Lange.Erkenntnis 3: 262300.Google Scholar
Drobisch, Moritz. 1851. Neue Darstellung der Logik. 2nd ed. Leipzig: Voss.Google Scholar
Durnmett, Michael. 1991. Frege: Philosophy of Mathematics. Cambridge, MA: Harvard University Press.Google Scholar
Eccarius, Wolfgang. 1989. ‘Die Ungestaltung der mathematischen Ausbildung an der Universität Jena zur Lehrerbildung unter Snell, Schaeffer und Abbe.Wissenschaftliche Zeitschrift Friedrich-Schiller-Universität Jena 34: 171-79.Google Scholar
Engel, F. 1911. ‘Grassmann's Leben.’ In Hermann Grassmanns Gesammelte mathematische und physikalische Werke, vol. 3, ed. Engel, F., 311-34. Leipzig: Teubner.Google Scholar
Farebrother, Richard. 1999. Fitting Linear Relationships: A History of the Calculus of Observations, 17501900. New York: Springer.Google Scholar
Fearnley-Sander, Desmond. 1979. ‘Hermann Grassmann and the creation of linear algebra.American Mathematical Monthly 86(10): 809-17.Google Scholar
Fechner, Gustav. 1890. Wissenschaftliche Briefe von Gustav Theodor Fechner und W. Preyer. Hamburg and Leipzig: L. Voss.Google Scholar
Feffer, Stuart. 1994. From Microscopes to Munitions: Ernst Abbe, Carl Zeiss, and the Transformation of Technical Optics, 18501914. PhD thesis, University of California, Berkeley.Google Scholar
Feffer, Stuart. 1996. ‘Ernst Abbe, Carl Zeiss, and the transformation of microscopical optics.’ In Scientific Credibility and Technical Standards in 19th and Early 20th Century Germany and Britain, ed. Buchwald, Jed, 2366. Dordrecht: Kluwer.Google Scholar
Frege, G. 1874. ‘Review of H. Seeger, Die Elemente der Arithmetik.’ Jenaer Literaturzeitung 1: 722. Trans. Hans Kaal; reprinted in Gottlob Frege: Collected Papers on Mathematics, Logic, and Philosophy, ed. McGuinness, B., 9394. Oxford: Blackwell, 1984. Page references to reprint.Google Scholar
Frege, G. 1893. Grundgesetze der Arithmetik, vol.l. Jena: Hermann Pohle. Partial English translation in Basic Laws of Arithmetic: Exposition of the System, trans. Furth, M.. Berkeley: University of California Press, 1964. References to translation for passages that occur in the translation, to original otherwise.Google Scholar
Frege, G. 1903. Grundgesetze der Arithmetik, vol. Ü. Jena: Hermann Pohle.Google Scholar
Frege, G. 1925. ‘Sources of knowledge of mathematic∼ and the mathematical natural sciences.’ In Posthumous Writings, ed. Hermes, H., Kambartel, F., and Kaulbach, F., 267-74. Oxford: Blackwell, 1979.Google Scholar
Frege, G. 1953/1884. The Foundations of Arithmetic, 2nd ed. Trans. Austin, J. L.. Evanston, IL: Northwestern University Press.Google Scholar
Frege, G. 1967 I 1879. ‘Begriffsschrift, a formula language modeled on that of arithmetic, for pure thought.’ In From Frege to Gödel, ed. Heijenoort, J. van; trans. Bauer-Mengelberg, S., 182. Cambridge, MA: Harvard University Press.Google Scholar
Frege, G. 1976. Wissenschaftlicher Briefwechsel, ·ed. Gabriel, G., Hermes, H., Kambartel, F., Thiel, C., and Veraart, A.. Hamburg: Felix Meiner.Google Scholar
Frege, G. 197911880. ‘Boole's logical calculus and the concept-script.’ In Posthumous Writings, ed. Hermes, H., Kambartel, F., and Kaulbach, F., 946. Chicago: University of Chicago Press.Google Scholar
Frege, G. 1979 I 1882. ‘Boole’ s logical formula-language and my concept-script.’ In Posthumous Writings, ed. Hermes, H., Kambartel, F., and Kaulbach, F., 4752. Chicago: University of Chicago Press.Google Scholar
Frege, G. 197911914. ‘Logic in mathematics.’ In Posthumous Writings, ed. Hermes, H., Kambartel, F., and Kaulbach, F., 203-50. Chicago: University of Chicago Press.Google Scholar
Frege, G. 1979/1924. ‘New attempt at a foundation for arithmetic.’ In Posthumous Writings, ed. Hermes, H., Kambartel, F., and Kaulbach, F., 278-81. Chicago: University of Chicago Press.Google Scholar
Frege, G. 1983. Nachgelassene Schriften. 2nd (expanded) ed.; ed. Hermes, H., Kambartel, F., and Kaulbach, F.. Hamburg: Felix Meiner.Google Scholar
Frege, G. 1984/1874. ‘Methods of calculation based on an extension of the concept of quantity.’ In Gottlob Frege: Collected Papers on Mathematics, Logic, and Philosophy, ed. McGuinness, B., 5692. Oxford: Blackwell.Google Scholar
Frege, G. 1984/1891. ‘On the law of inertia.’ In Gottlob Frege: Collected Papers on Mathematics, Logic, and Philosophy, ed. McGuinness, B., 123-36. Oxford: Blackwell.Google Scholar
Frege, G. 1996. ‘Diary: Written by Professor Dr Gottlob Frege in the time from 10 March to 9 April1924.Inquiry 39: 303-42.Google Scholar
Fries, Jakob. 1842. Versuch einer Kritik der Principien der Wahrscheinlichkeitsrechnung. Braunschweig: Vieweg und.Sohn.Google Scholar
Gabriel, Gottfried. 1997. ‘Leo Sachse, Herbart, Frege, und die Grundlagen der Arithmetik.’ In Frege in Jena: Beiträge zur Spurensicherung, ed. Gabriel, Gottfried and Kienzler, Wolfgang, 5367. Würzburg: Königshausen & Neumann.Google Scholar
Gabriel, Gottfried. 2002. ‘Frege, Lotze, and the continental roots of early analytic philosophy.’ In From Frege to Wittgenstein: Perspectives on Early Analytic Philosophy,· ed. Reck, Erich, 3951. Oxford: Oxford University Press.Google Scholar
Gauss, C. F.1809. Theoria motus corporum coelestium in sectionibus conicus solem ambientium. Hamburg: Perthes et.Besser ( = Werke 7, 1-280). Trans. by C. H. Davis as Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, Mineola, NY: Dover, 1963.Google Scholar
Gauss, C. F. 1831. ‘Theoria residuorum biquadraticorum: Commentatio seconda.Göttingensche gelehrte Anseigen, 64 (23). Page reference to reprinting in Werke 11:169-78.Google Scholar
Ghiselin, Michael. 2003. ‘Carl Gegenbaur versus Anton Dohrn.Theory in Biosciences 122: 142-47.Google Scholar
Glatzer, , 1.1913. ‘A successful social reformer. Ernst Abbe 1840-1905.’ Economic Journa/23(91): 329-39.Google Scholar
Goldmark, Josephine. 1912. Fatigue and Efficiency: A Study in Industry. New York: Russell Sage Foundation.Google Scholar
Göpfert, H. 1999. ‘Carl Johannes Thomae (1840-1921).’ http:/ /www.mathematik. uni-halle.de /history I thomae I index.htmlGoogle Scholar
Grassmann, Hermann. 1844. Die Lineale Ausdehnungslehre ein neuer Zweig der Mathematik, dargestellt und durch Anwendungen auf die übringen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erlüutert. Leipzig: Wiegand. Trans. by Lloyd C. Kannenberg in A New Branch of Mathematics: The Ausdehnungslehre of1844 and Other Works, Chicago: Open Court. 1995.Google Scholar
Grassmann, Hermann. 1847. Geometrische Analyse geknüpft an die von Leibniz erfundene geometrische Charakter!stik. Leipzig: GekrOnte Preisshrift. Trans. by Lloyd C. Kannenberg in A New Branch of Mathematics: The Ausdehnungslehre of1844 and Other Works, Chicago: Open Court. 1995.Google Scholar
Grassmann, Hermann. 1877. ‘Der Ort der Hamilton'schen Quaternionen in der Ausdehnungslehre.’ Mathematische Annalen 12: 375-86. Trans. as ‘The position of the Hamiltonian quaternions in extension theory,’ in Lloyd C. Kannenberg, A New Branch of Mathematics: The Ausdehnungslehre of 1844 and Other Works, Chicago: Open Court. 1995. Page references to the translation.Google Scholar
Groeben, Christiane. 1985. ‘Anton Dohrn: The statesman of Darwinism.’ Biological Bulletin 168 (supplement): 425.Google Scholar
Gronau, D. 1997. ‘Gottlob Frege, a pioneer in iteration theory.Grazer mathematische Berichte 334: 105-19. Volume title: Iteration Theory (ECIT 94): Proceedings of the European Conference on Iteration Theory.Google Scholar
Günther, N. 1970. ‘Ernst Abbe.’ In Dictionary of Scientific Biography, vol. A, ed. Gillispie, Charles C., 69. New York: Charles Scribner's Sons.Google Scholar
Guttorp, Peter. 1991. ‘Spatial statistics in ecology.’ In Spatial Statistics and Digital Image Analysis. Washington: National Academy.of Sciences Press.Google Scholar
Hacking, Ian. 1981. ‘Do we see through a microscope?Pacific Philosophical Quarterly 63: 305-22.Google Scholar
Hacking, Ian. 1990. The Taming of Chance. Cambridge: Cambridge University.Press.Google Scholar
Haeckel, Ernst. 1891. ‘Plankton studien.Jena Zeitschrift für Naturwissenschaft 25: 232336.Google Scholar
Haeckel, Ernst. 1905. The Evolution of Man: A Popular Scientific Study, vol. Joseph McCabe, Ü. (trans. from the 5th ed.). New York: Putnam and Sons.Google Scholar
Hald, Anders. 1998. A History of Mathematical Statistics from 1750 to 1930. New York: Wiley-Interscience.Google Scholar
Hallier, Ernst. 1875. Die Weltanschauung des Naturforschers. Jena: Hermann Dufft.Google Scholar
Hamilton, William Rowan. 1853. Lectures on Quaternions. Dublin: Hodges and.Smith.Google Scholar
Hankel, Hermann. 1862. Über eine besondere Classe der symmetrischen Determinanten. Dissertation, Leipzig.Google Scholar
Hankel, Hermann. 1867. Vorlesungen über die Complexen Zahlen und ihren Functionen: Theorie der Complexen Zahlensysteme, vol. I. Leipzig: Teubner.Google Scholar
Hawkins, Thomas. 1989. ‘Line geometry, differential equations, and the birth of Lie's theory of groups.’ In The History of Modern Mathematics, vol. 1, ed. Rowe, D. and McCleary, J., 275327. Boston: Academic Press.Google Scholar
Hawkins, Thomas. 1991. ‘Jacobi and the birth of Lie's theory of groups.Archive for History of Exact Sciences 42: 187276.Google Scholar
Hawkins, Thomas. 2000. The Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics 1869–1926. Berlin: Springer.Google Scholar
Helmert, Friedrich RÜbert. 1907. Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, mit Anwendungen auf die Geodüsie, die Physik und die Theorie der Messinstrumente, 2nd ed. Leipzig: Teubner.Google Scholar
Helmholtz, Hermann. 1874. ‘Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope.’ Annalen der Physik Jubelband (special volume): 557-84.Google Scholar
Hensen, Victor. 1887. ‘Ueber die Bestimmung der Planktons oder des im Meer triebenden Materials an Pflanzen und Tieren.Bericht der Commission zur wissenschaftlichen Untersuchungen der deutschen Meere 5: 1108.Google Scholar
Hensen, V., ed. 1895. Methodik der Untersuchungen bei der Plankton-Expedition der Humboldt-Stiftung. Kiel and Leipzig: Lipsius & Tischer.Google Scholar
Herzberger, Maximilian. 1954. ‘The scientific work of Constantin Rudolf Straubel.Journal of the Optical Society of America 44: 589-92.Google Scholar
Herzberger, Maximilian. 1958. Modern Geometrical Optics. New York: Wtley Interscience.Google Scholar
Herzberger, Maximilian. 1959. ‘Color correction in optical systems and a new dispersion formula.Acta Optica 6(3): 197215.Google Scholar
Herzberger, Maximilian. 1966. ‘Optics from Euclid to Huygens.Applied Optics 5(9): 1383–93.Google Scholar
Herzberger, Maximilian, and McClure, Nancy. 1963. ‘The design of superachromatic lenses.’ Applied Optics, 2(6﹜: 553-60.CrossRefGoogle Scholar
Hilbert, David. 1998. Theory of Algebraic Number Fields. Trans. Adamson, Ian T.. Berlin: Springer. ‘Die Theorie der algebraischen Zahlkörper’ originally published 1897 in Jahresbericht der Deutschen Mathematiker-Vereinigung, Bd. 4, S.175-546.Google Scholar
Horn, Gisela and Hellmann, Birgitt. 2001. Entwurf und Wirklichkeit: Frauen in Jena 1900 bis 1933. Rudolphstadt: Hain.Google Scholar
Jackson, Myles W. 2000. Spectrum of Belief Joseph von Fraunhofer and the Craft of Precision Optics. Cambridge, MA: MIT Press.Google Scholar
Jahn, Use. 1991. ‘The influence of Jakob Friedrich Fries on Matthias Scheiden.’ In World Views and Scientific Discipline Formation, ed. Woodward, Wtlliam R. and Cohen, RÜbert S., 357-65. Dordrecht: Kluwer.Google Scholar
Jevons, William Stanley. 1879. The Principles of Science: A Treatise on Logic and Scientific Method, 3rd ed. London: Macmillan.Google Scholar
Kading, John. 1939. ‘Schleiden's contribution to the cell theory.American Naturalist 73: 517-37.Google Scholar
Kendall, M. K. 1971. ‘Studies in the history of probability and statistics. XXVI: The work of Ernst Abbe.Biometrika 58: 369-73.Google Scholar
Keynes, John Maynard. 1921. A Treatise on Probability. London: Macmillan.Google Scholar
Klein, Marc. 1970. ‘Schleiden, Jakob Matthias.’ In Dictionary of Scientific Biography, ed. Gillespie, A., 173-76. New York: Charles Scribner's Sons.Google Scholar
Köhler, H. 1981. ‘On Abbe's theory of image formation in the microscope.Acta Optica (now Journal of Modern Optics) 28(12): 16911701.Google Scholar
Kossak, E. 1872. Die Elemente der Arithmetik. Berlin: Nicolai'sche Verlagsbuchhandlung.Google Scholar
Kötter, E. 1901. ‘Die Entwicklung der synthetischen Geometrie von Monge bis auf Staudt (1847).Jahresbericht der Deutschen Mathematiker-Vereinigung 5:1-486.Google Scholar
Kreiser, Lothar. 1984. ‘G. Frege, Die Grundlagen der Arithmetik-Werk und Geschichte.’ In Frege Conference 1984, ed. Wechsung, Gerd. Berlin: Academie.Google Scholar
Kreiser, Lothar. 1995. ‘Die hörer Freges und sein Briefpartner Alwin Korselt.’ Wittgenstein Studies, Diskette 1 (electronic journal; http:/ /sammelpunkt. philo.at:8080 I 448 I).Google Scholar
Kreiser, Lothar. 2001. Gottlob Frege: Leben, Werk, Zeit. Hamburg: Felix Meiner.Google Scholar
Lancaster, H. O. 1950. ‘Statistical control in haematology.Journal of Hygiene 48:402-17.Google Scholar
Lange, F. A. 1873 I 1925. The History of Materialism and Criticism of its Present Importance, trans. Thomas, E.C.. London: Routledge and Kegan Paul. (The original: Geschichte des Materialismus und Kritik seiner Bedeutung in der Gegenwart, 2nd ed. Iserlohn: J. Baedeker, 1873.)Google Scholar
Laudan, Larry. 1973. ‘Induction and probability in the nineteenth century.’ In Proceedings of the Fourth International Congress for Logic, Methodology and Philosophy of Science, Bucharest, 1971, ed. Suppes, Patrick, 429-38. Amsterdam: North Holland.Google Scholar
Laugwitz, Detlef. 1999. Bernhard Riemann, 1826-1866: Turning Points in the Conception of Mathematics, trans. Shenitzer, Abe. Boston: Birkhäuser.Google Scholar
Legendre, A. M. 1805. Nouvelles methodes pour Ia détermination des orbites des comètes. Paris: Courcier.Google Scholar
Legendre, Pierre, and M.-J., Fortin. 1989. ‘Spatial pattern and ecological analysis.Vegetatio 80: 107-38.Google Scholar
Listing, Johannes Benedict 1845. Beitrag zur physiologischen Optik. Göttingen. Reprinted in the Ostwald's Klassiker der exakten Wissenschaften series, vol. 147. Leipzig: Engelmann, 1905.Google Scholar
Longhurst, R. S. 1973. Geometrical and Physical Optics. 3rd ed. London: Longman.Google Scholar
Lotze, Hermann. 1884. Logic, in Three Books: Of Thought, of Investigation, and of Knowledge. Bosailquet, B. (ed. and trans. of 1880, 2nd ed. Logik: Drei Bücher), Oxford: Clarendon.Google Scholar
Lummer, D., and F., Reiche. 1910. Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe. Braunschweig: Vieweg.Google Scholar
Lussenhop, John. 1974. ‘Victor Hensen and the development of sampling methods in ecology.Journal of the History of Biology 7(2): 319-37.Google Scholar
Merrimann, Mansfield. 1877. ‘A list of writings related to the method of least squares with historical and critical notes.Transactions of the Connecticut Academy 4: 151232.Google Scholar
Mills, Eric L. 1989. Biological Oceanography: An Early History, 1870–1960. Ithaca, NY: Cornell University Press.Google Scholar
Möbius, A. 1838. ‘Über die Zusammensetzung unendlich kleiner Drehungen. Journal for reine und angewante Mathematik, 18: 189212 (= Werke I. 545-70).Google Scholar
Mylott, Anne. 2007. ‘Schleiden, Jakob Matthias.’ In New Dictionary of Scientific Biography, ed. Koertge, Noretta, v. 6. New York: Charles Scribner's Sons.Google Scholar
Neuenschwander, E. 1981. ‘'Über die Wechselwirkungen zwischen der französischen Schule, Riemann und WeierstraS. eine Übersicht mit zwei Quellenstudien.Archive for History of Exact Sciences 24(3): 221-55.Google Scholar
Neuenschwander, E. 1996. Riemanns Einftlhrung in die Funktionentheorie: Eine quellenkritische Edition seiner Vorlesungen mit einer Bibliographie zur Wirkungsgeschichte der Riemannschen Funktionentheorie. Gottingen: Vandenhoeck & Ruprecht.Google Scholar
Ogle, Kenneth. 1963. ‘Maximilian J. Herzberger, Fredric Ives medalist for 1962.Journal of the Optical Society of America 53(6): 657-60.Google Scholar
Oldfield, Ronald Jowett. 1994. Light Microscopy: An Illustrated Guide. Aylesbury, UK: Wolfe Publishing.Google Scholar
Pearson, Karl. 1900. ‘On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.Philosophical Magazine 50: 157-75.Google Scholar
Petsche, Hans-Joachim. 2009. Hermann Grassmann-Biography. Basel: Birkhauser..Google Scholar
Petsche, Hans-Joachim. 2010a. ‘Ernst Abbe's reception of Grassmann in the light of Grassmann's reception of Schleiermacher.’ In From Past to Future: Grassmann's Work in Context: The Grassmann Bicentennial Conference, September 2009, ed. Petsche, Hans-Joachim, Lewis, Albert C., Liesen, Jorg, and Russ, Steve, 16h-74. Basel: Birkhauser.Google Scholar
Petsche, Hans-Joachim. 2010b. ‘Reflections on the polymath Hermann Grassmann.Newsletter of the European Mathematical Society 76: 3946.Google Scholar
Poinsot, Louis. 1834. Theorie nouvelle de Ia rotation des corps-Estrait d'un mhnoire lu a l'Acadbnie des Sciences de l'Institut, le 19 mai 1834. Paris: Bachelier.Google Scholar
Porter, Theodore. 1986. The Rise of Statistical Thinking, 1820–1900. Princeton: Princeton University.Press.Google Scholar
Potter, Michael. 2010. ‘Introduction.’ In The Cambridge Companion to Frege, ed. Ricketts, T. and Potter, M., 131. Cambridge: Cambridge University Press.Google Scholar
Preyer, Wilhem. 1877. Elemente der reinen Empftndungslehre. Jena: Hermann Dufft.Google Scholar
Pulte, Helmut. 2006. ‘Kant, Fries, and the expanding universe of science.’ In The Kantian Legacy in Nineteenth-Century Science, ed. Friedman, Michael and Nordmann, Alfred, 101-22. Cambridge, MA: MIT Press.Google Scholar
Reck, Erich, and Steven, Awodey. 2004. ‘Editor's introduction.’ In Frege's Lectures on Logic, ed. Reck, Erich, Awodey, Steve, and Gabriel, Gottfried, 1744. Peru, IL: Open Court.Google Scholar
Reich, Karin. 1996. ‘The emergence of vector calculus in physics: The early decades.’ In Hermann Günter Grassmann (1809-1877) Visionary Mathematician, Scientist and Neohumanist Scholar, ed. Schubring, G., 197210. Dordrecht: Kluwer.Google Scholar
Rice, J. Minot, and W. Woolsey, Johnson. 1874. The Elements of the Differential and Integral Calculus founded on the method of Rates or Fluxions. New York: Wiley and Sons.Google Scholar
Riemann, Bernhard. 1857a. ‘Abstract of [1857b].’ Göttinger Nachrichten, 1 (= Werke, 84-85).Google Scholar
Riemann, Bernhard. 1857b. ‘Beiträge zur Theorie der durch die Gauss'sche Reihe F(α, β, γ, x) darstellbaren Functionen.’ Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Göttingen, 7 (= Werke 67-83).Google Scholar
Riemann, Bernhard. 1868/1854. ‘Ueber die Hypothesen, welche der Geometrie zu grunde liegen.’ Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, XIII(= Werke, 272-87). English trans. by W. Clifford, revised by W. Ewald in W. Ewald, ed., From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 652-61. Oxford: Clarendon, 1996. Page references to translation.Google Scholar
Roch, Gustav. 1863. ‘Ueber Functionen complexer Grdssen.Zeitschrift für Mathematik und Physik 8: 12-26; 183203.Google Scholar
Rowe, David. 1989. ‘The early geometrical works of Felix Klein and Sophus Lie.’ In The History of Modern Mathematics, vol. 1, ed. Rowe, D. and McCleary, J., 208-73. Boston: Academic Press.Google Scholar
Rowe, David. 1994. ‘Line geometry.’ In Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. lvor Grattan-Guinness, 2: 908-12. London: Routledge.Google Scholar
Rozwadowski, Helen. 2002. The Sea Knows No Boundaries: A Century of Marine Science under ICES. Seattle: University of.Washington Press.Google Scholar
Schaeffer, Hermann, ed. 1877. Erinnerungsblätter der Mathematischen Gessellschaft zu jena. Jena.Google Scholar
Schleiden, Matthias. 1842. Grundzüge der wissenschaftlichen Botanik. Leipzig: Wilhelm Engelmann. Trans. by Edwin Lankester as Principles of Scientific Botany (though omitting the methodological introduction). London: Longman, Brown, Green, and Longmans, 1849.Google Scholar
Schlömilch, Oscar. 1868. Übungsbuch der höheren Analysis. Leipzig: Teubner.Google Scholar
Schmitz, Norbert. 2006. Moritz Abraham Stern (1807-1894). Der erste jüdische Ordinarius an einer deutschen Universitüt und sein populärastronomisches Werk. Hanover: Wehrhahn.Google Scholar
Scholem, Gershom. 1975. Walter Benjamin-Die Geschichte einer Freundschaft. Frankfurt: Suhrkamp.Google Scholar
Scholem, Gershom. 1977. Von Berlin nach Jerusalem. Jugenderinnerungen. Frankfurt: Suhrkamp.Google Scholar
Schröpfer, Horst. 1993. ‘Philosophische Anschauungen.’ In Carl Zeiss und Ernst Abbe: Leben, Wirken und Bedeutung, ed. Stoltz, Rudiger and Wittig, Joachim, 218-32. Universitätsverlag Jenaer Reden und Schriften.Google Scholar
Schubring, Gerd. 2005. Conflicts between Generalization, Rigor and Intuition. New York: Springer.Google Scholar
Segal, Sanford. 2003. Mathematicians under the Nazis. Princeton: Princeton University.Press.Google Scholar
Seneta, E. 1982. ‘Ernst Abbe.’ In Encyclopedia of Statistical Sciences, ed. Kotz, S. and Johnson, N. L., 1:2-3. New York: Wiley.Google Scholar
Seneta, Eugene. 1983. ‘Modem probabilistic concepts in the work of E. Abbe and A. de Moivre.Mathematical Scientist 8: 7580.Google Scholar
Shedletzky, ltta, ed.1999. Gershom Scholem, Briefe, Band ÜI,1971-1982. Munich: C. H. Beck.Google Scholar
Sheynin, Oscar. 1966. ‘The origin of the theory of errors.Nature 211: 1002–4.Google Scholar
Sheynin, O. 1971. ‘Studies in the history of probability and statistics. XXV: On the history of some statistical laws of distribution.Biometrika 58: 234-38.Google Scholar
Sheynin, Oscar.1979. ‘C. F. Gauss and the theory of errors.Archive for History of Exact Sciences 20: 2172.Google Scholar
Sheynin, Oscar. 1986. ‘Quetelet as statistician.Archive for History of Exact Sciences 36:281-325.Google Scholar
Sheynin, Oscar. 1995. ‘Helmert's work in the theory of errors.Archive for History of Exact Sciences 49(1): 73104.Google Scholar
Sluga, Hans. 1984. ‘Frege: The early years.’ In Philosophy in History, ed. Rorty, Richard, Schneewind, Jerome, and Skinner, Quentin, 329-56. Cambridge: Cambridge University Press.Google Scholar
Smetacek, Victor. 1985. ‘The annual cycle of Kiel Bight plankton: A long-term analysis.Estuaries 8(2): 145-57.Google Scholar
Smith, David, ed. 1959. A Source Book in Mathematics. Mineola, NY: Dover.Google Scholar
Snell, Karl. 1846. Einleitung in die differential-und integralrechnung. Leipzig: Brockhaus.Google Scholar
Stauffer, RÜbert. 1957. ‘Haeckel, Darwin and ecology.Quarterly Review of Biology 32: 138-44.Google Scholar
Stein, Howard. 1990. ‘Eudoxus and Dedekind: On the ancient theory of Greek ratios and its relation to modem mathematics.Synthèse 80: 163211.Google Scholar
Stelzner, Werner. 1996. Gottlob Frege und die Geburt der modernen Logik. Jena: ReFit.Google Scholar
Stelzner, Werner. 1997. ‘Ernst Abbe und Gottlob Frege.’ In Frege in Jena, ed. Gabriel, Gottfried and Kienzler, Wolfgang, 532. Würzburg: Konigshausen & Neumann.Google Scholar
Stigler, Stephen. 1986. The History of Statistics. Cambridge, MA: Harvard University Press..Google Scholar
Straubel, Rudolf. 1888. Über die Berechnung der Frauenhoferschen Beugungserscheinungen durch Randintegrale mit besonderer Berücksichtigung der Theorie der Beugung im Heliometer. PhD thesis, Jena.Google Scholar
Student, . 1907. ‘On the error of counting with a haemacytometer.Biometrika 5(3): 351-60.CrossRefGoogle Scholar
Sullivan, David. 1990. ‘Frege on the statement of number.Philosophy and Phenomenological Research 50(3): 595603.Google Scholar
Swijtek, Zeno. 1994. ‘Probability and statistics in mechanics.’ In Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, ed. Grattan-Guinness, lvor, 1:1377-91. London: Routledge.Google Scholar
Tappenden, Jamie. 1995a. ‘Extending knowledge and “fruitful concepts“: Fregean themes in the foundations of mathematics.Nous 29: 427-67.Google Scholar
Tappenden, Jamie. 1995b. ‘Geometry and generality in Frege's philosophy of arithmetic.Synthèse 102:319-61.Google Scholar
Tappenden, Jamie. 2005. ‘Proof style and understanding in mathematics 1: Visualization, unification and axiom choice.’ In Visualization, Explanation and Reasoning Styles in Mathematics, ed. Mancosu, Paolo and jorgensen, Klaus, 147214. New York: Springer.Google Scholar
Tappenden, Jamie. 2006. ‘The Riemannian background to Frege's philosophy.’ In The Architecture of Modern Mathematics: Essays in History and Philosophy, ed. José, Ferreiròs and Gray, Jeremy, 107-50. Oxford: Oxford University Press.Google Scholar
Tappenden, Jamie. 2008. ‘Mathematical concepts: Fruitfulness and naturalness.’ In The Philosophy of Mathematical Practice, ed. Mancosu, P., 276301. Oxford: Oxford University Press.Google Scholar
Tappenden, Jamie. forthcoming. Philosophy and the Origins of Contemporary Mathematics: Frege and his Mathematical Context. Oxford: Oxford University.Press.Google Scholar
Tappenden, Jamie. ms. ‘Reflections on mathematical explanation: Why do elliptic functions have two periods?'Google Scholar
Thoorides, Jan. 1971. ‘Ernst Hallier.’ In Dictionary of Scientific Biography. New York: Charles Scribner's Sons.Google Scholar
Theuss, Theodor. 1991. Anton Dohrn: A Life in Science, trans. Dieckmann, L.. Berlin: Springer.Google Scholar
Tobies, Renate. 1996. ‘The reception of H. Grassmann's mathematical achievements by Clebsch and his school.’ In Hermann Günter Grassmann (1809-1877) Visionary Mathematican, Scientist and Neohumanist Scholar, ed. Schubring, G., 117-30. Dordrecht: Kluwer.Google Scholar
Varrentrapp, Georg. 1880. ‘Nekrolog. Dr. Alexander Crailsheim.]ahresberichte Uber die Verwaltung des Medizinalwesens die Krankenanstaltung und die öffentlichen Gesundheitsverhaeltnisse der Stadt Frankfurt A.M. 23:252-57.Google Scholar
Venn, John. 1866. The Logic of Chance. 1st ed. London: Macmillan.Google Scholar
Venn, John. 1876. The Logic of Chance. 2nd ed. London: Macmillan.Google Scholar
Veraart, A. 1976. ‘Geschichte des wissenschaftlichen Nachlassen Gottlob Freges und seiner Edition: Mit einem Katalog des ursprünglichen Bestands der nachgelassenen Schriften Freges.’ In Studien zu Frege I Studies in Frege, ed. Schirn, Matthias. vol. I, 49106. Stuttgart-Bad Cannstatt: FromannHolzboog.Google Scholar
Volkmann, H. 1966. ‘Ernst Abbe and his work.Applied Optics 5: 1720–31.CrossRefGoogle ScholarPubMed
Von Kries, J. 1886. Principien der Wahrscheinlichkeitsrechnung. Frieburg: Mohr.Google Scholar
Wittig, Joachim. 1989. Ernst Abbe: Sein Nachwirken an der ]enaer Universitüt. Jenaer Red en.und Schriften.CrossRefGoogle Scholar
Wittig, Joachim. 1993. ‘Schüler und Student.’ In Carl Zeiss und Ernst Abbe: Leben, Wirken und Bedeutung, ed. Stoltz, Rüdiger and Wittig, Joachim, 205-17. Jena: Universitatsverlag Jenaer Reden und Schriften.Google Scholar
Zabell, S. I. 1989. ‘The rule of succession.Erkenntnis 31: 283321.Google Scholar