Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T15:05:54.707Z Has data issue: false hasContentIssue false

Leibniz on Truth and Contingency

Published online by Cambridge University Press:  01 January 2020

Charles E. Jarrett*
Affiliation:
University of Alberta and Rutgers University, Camden College

Extract

Leibniz’ principal doctrine of truth is an attempt to set out the truth-conditions for a certain syntactically-defined class of propositions. As such, it constitutes an attempt to provide at least one portion of a semantical theory. The doctrine itself is found for example in Elementa Calculi:

Every true categorical proposition, affirmative and universal, signifies nothing but a certain connection between the predicate and the subject… This connection is such that the predicate is said to be in the subject, or to be contained in it, and this either absolutely and viewed in itself, or in some particular case. Or in the same way, the subject is said to contain the predicate; that is, the notion of the subject, either in itself or with some addition, involves the notion of the predicate.

It is clear, from this work as well as from “First Truths” and “On Freedom”, that the doctrine is not restricted to universal affirmatives, but applies as well to particular affirmatives.

Type
Research Article
Copyright
Copyright © The Authors 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, Charles & Tannery, Paul, eds., Oeuvres de Descartes, I-XIII (Paris, 1897-1913).Google Scholar
Arnauld, Antoine & Nicole, Pierre, Logique de Port-Royal (Paris, 1868).Google Scholar
Beck, Lewis White, Early German Philosophy (Cambridge, Mass., 1969).Google Scholar
Burgersdijck, F.P., lnstitutiones Logicarum Libri Duo (Cantabrigiae, 1637).Google Scholar
Castañeda, Hector-Neri, “Leibniz’ Syllogistico-Propositional Calculus,Notre Dame journal of Formal Logic, vol. 17 (1976), pp. 481500.CrossRefGoogle Scholar
Clauberg, Johann, Opera Omnia Philosophica, 1-11 (Amstelodami, 1691). (republished 1968).Google Scholar
Couturat, Louis, ed., Opuscules et Fragments lnédits de Leibniz (Paris, 1903)Google Scholar
Coutu rat, Louis, “Sur la Métaphysique de Leibniz,Revue de Métaphysique et de Morale, vol. 10 (1902).Google Scholar
Curley, E. M., “The Root of Contingency,” (pp. 6997 of Leibniz: A collection of Critical Essays, edited by Frankfurt, H.G.).Google Scholar
Duns Scotus, John, Opera Omnia, II (Paris, 1891; republished 1969).Google Scholar
Frankfurt, Harry G., ed., Leibniz: A Collection of Critical Essays (Garden City, New York, 1972)Google Scholar
Gebhardt, Carl, ed., Spinoza Opera, I-IV (Heidelberg, 1925).Google Scholar
Gerhardt, C.I., ed., Philosophische Schriften von G.W. Leibniz, I-VII (Berlin, 1875-90).Google Scholar
Hughes, G.E. & Cresswell, M.J., An Introduction to Modal Logic (London, 1968).Google Scholar
Georges, LeRoy, ed., Leibniz: Discours de Métaphysique et Correspondance avec Arnauld (Paris, 1957).Google Scholar
Loemker, Leroy E., tr. & ed., G. W. Leibniz: Philosophical Papers and Letters (second edition; Dordrecht, 1969).Google Scholar
McKeon, Richard, ed., The Basic Works of Aristotle (New York, 1941).Google Scholar
Minio-Paluello, L. ed., Aristotelis Categoriae et Liber de lnterpretatione (Oxford, 1966).Google Scholar
Pacius, Julius, Aristotelis Stagiritae Peripateticorum Principis Organum (Editio Secunda; Francofurti, 1597; republished 1967).Google Scholar
Parkinson, G.H.R., tr. & ed., Leibniz: Logical Papers (Oxford, 1966).Google Scholar
Wiener, Philip P., tr. & ed., Leibniz Selections (New York, 1951).Google Scholar
Wiener, Philip P., “Notes on Leibniz’ Conception of Logic in its Historical Context,The Philosophical Review, 48 (1939), pp. 567586.CrossRefGoogle Scholar