Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T00:19:05.694Z Has data issue: false hasContentIssue false

Why is ALS so Difficult to Treat?

Published online by Cambridge University Press:  23 September 2014

John Turnbull*
Affiliation:
Department of Medicine, McMaster University, Hamilton, Ontario, Canada
*
Andrew Bruce Douglas Chair of Neurology, Department of Medicine, McMaster University, 1200 Main St W, Hamilton Ontario, L8N 3Z5, Canada. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amyotrophic lateral sclerosis (ALS) is proving intractable. Difficulties in pre-clinical studies contribute in small measure to this futility, but the chief reason for failure is an inadequate understanding of disease pathogenesis. Many acquired and inherited processes have been advanced as potential causes of ALS but, while they may predispose to disease, it seems increasingly likely that none leads directly to ALS. Rather, two recent overlapping considerations, both involving aberrant protein homeostasis, may provide a better explanation for a common disease phenotype and a common terminal pathogenesis. If so, therapeutic approaches will need to be altered and carefully nuanced, since protein homeostasis is essential and highly conserved. Nonetheless, these considerations provide new optimism in a difficult disease which has hitherto defied treatment.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2014

References

1.Miller, R, Bradley, W, Cudkowicz, M, et al. TCH346 Study Group. Phase II/III randomized trial of TCH346 in patients with ALS. Neurology. 2007;69(8):77684.Google Scholar
2.Norris, FH, Tan, Y, Fallat, RJ, Elias, L.Trial of oral physostigmine in amyotrophic lateral sclerosis. Clin Pharmacol Ther. 1993;54(6):6802.Google Scholar
3.Askmark, H, Aquilonius, SM, Gillberg, PG, et al. Functional and pharmacokinetic studies of tetrahydroaminoacridine in patients with amyotrophic lateral sclerosis. Acta Neurol Scand. 1990;82(4):2538.Google Scholar
4.Parton, M, Mitsumoto, H, Leigh, PN.Amino acids for amyotrophic lateral sclerosis / motor neuron disease. Cochrane Database of Systematic Reviews 2008, Issue 2.Google Scholar
5.National Institute of Neurological Disorders and Stroke [homepage on the Internet]. NINDS Amyotrophic Lateral Sclerosis (ALS) Information Page. [Updated 2013 July 8; cited 2013 April 29]. Available from: Ninds.nih.gov/disorders/amyotrophiclateralsclerosis/ALS.htmGoogle Scholar
6.Gredal, O, Werdelin, L, Bak, S, et al. A clinical trial of dextromethorphan in amyotrophic lateral sclerosis. Acta Neurol Scand. 1997;96(1):813.Google Scholar
7.Miller, RG, Moore, DH 2nd, Gelinas, DF, et al. Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology. 2001;56(7):8438.CrossRefGoogle ScholarPubMed
8.Eisen, A, Stewart, H, Schulzer, M, Cameron, D.Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci. 1993;20(4):297301.Google ScholarPubMed
9.Blin, O, Pouget, J, Aubrespy, G, et al. A double-blind placebo-controlled trial of L-threonine in amyotrophic lateral sclerosis. J Neurol. 1992;239(2):7981.CrossRefGoogle ScholarPubMed
10.de Carvalho, M, Pinto, S, Costa, J, Evangelista, T, Ohana, B, Pinto, A.A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11(5):45660.Google Scholar
11.Miller, RG, Shepherd, R, Dao, H, et al. Controlled trial of nimodipine in amyotrophic lateral sclerosis. Neuromuscul Disord. 1996;6(2):1014.Google Scholar
12.Pascuzzi, RM, Shefner, J, Chappell, AS, et al. A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010 May 3;11(3):26671.Google Scholar
13.Cudkowicz, ME, Shefner, JM, Schoenfeld, DA, et al. A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology. 2003;61(4):45664.Google Scholar
14.Di, Lazzaro V, Pilato, F, Profice, P, et al. Motor cortex stimulation for ALS: a double blind placebo-controlled study. Neurosci Lett. 2009;464(1):1821.Google Scholar
15.Miller, RG, Smith, SA, Murphy, JR, et al. A clinical trial of verapamil in amyotrophic lateral sclerosis. Muscle Nerve. 1996;19(4):51115.Google Scholar
16.Miller, RG, Mitchell, JD, Moore, DH.Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database of Systematic Reviews 2012, Issue 3. Art. No.: CD001447. DOI: 10.1002/14651858.CD001447.pub3.Google Scholar
17.Piepers, S, Veldink, JH, de Jong, SW, et al. Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Ann Neurol. 2009;66(2):22734.Google Scholar
18.Kelemen, J, Hedlund, W, Orlin, JB, Berkman, EM, Munsat, TL.Plasmapheresis with immunosuppression in amyotrophic lateral sclerosis. Arch Neurol. 1983;40(12):7523.Google Scholar
19.Cudkowicz, ME, Shefner, JM, Schoenfeld, DA, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol. 2006;60(1):2231.Google Scholar
20.Smith, SA, Miller, RG, Murphy, JR, Ringel, SP.Treatment of ALS with high dose pulse cyclophosphamide. J Neurol Sci. 1994;124 Suppl:847.Google Scholar
21.Appel, SH, Stewart, SS, Appel, V, et al. A double-blind study of the effectiveness of cyclosporine in amyotrophic lateral sclerosis. Arch Neurol. 1988;45(4):3816.Google Scholar
22.Meininger, V, Drory, VE, Leigh, PN, Ludolph, A, Robberecht, W, Silani, V.Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double-blind, randomized, multicentre, placebo-controlled trial. Amyotroph Lateral Scler. 2009;10(5–6):37883.Google Scholar
23.Mora, JS, Munsat, TL, Kao, KP, et al. Intrathecal administration of natural human interferon alpha in amyotrophic lateral sclerosis. Neurology. 1986;36(8):113740.Google Scholar
24.Beghi, E, Chiò, A, Inghilleri, M, et al. A randomized controlled trial of recombinant interferon beta-1a in ALS. Italian Amyotrophic Lateral Sclerosis Study Group. Neurology. 2000;54(2):46974.Google Scholar
25.Meucci, N, Nobile-Orazio, E, Scarlato, G.Intravenous immunoglobulin therapy in amyotrophic lateral sclerosis. J Neurol. 1996;243(2):11720.Google Scholar
26.Gordon, PH, Moore, DH, Miller, RG, et al. Western ALS Study Group. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6(12):104553.Google Scholar
27.Meininger, V, Asselain, B, Guillet, P, et al; Pentoxifylline European Group. Pentoxifylline in ALS: a double-blind, randomized, multicenter, placebo-controlled trial. Neurology. 2006;66(1):8892.Google Scholar
28.Rivera, VM, Grabois, M, Deaton, W, Breitbach, W, Hines, M.Modified snake venom in amyotrophic lateral sclerosis. Lack of clinical effectiveness. Arch Neurol. 1980;37(4):2013.Google Scholar
29.Drachman, DB, Chaudhry, V, Cornblath, D, et al. Trial of immunosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation. Ann Neurol. 1994;35(2):14250.Google Scholar
30.Zhang, YJ, Zhang, J, Zhang, N, et al. The randomized open clinical trial on a novel free radical scavenger edaravone in amyotrophic lateral sclerosis. Chin J Contemp Neurol Neurosurg. [Internet]. 2007;7(2):1614.Google Scholar
31.Chiò, A, Cucatto, A, Terreni, AA, Schiffer, D.Reduced glutathione in amyotrophic lateral sclerosis: an open, crossover, randomized trial. Ital J Neurol Sci. 1998;19(6):3636.Google Scholar
32.Louwerse, ES, Weverling, GJ, Bossuyt, PM, Meyjes, FE, de Jong, JM.Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch Neurol. 1995;52(6):55964.Google Scholar
33.Lange, DJ, Murphy, PL, Diamond, B, et al. Selegiline is ineffective in a collaborative double-blind, placebo-controlled trial for treatment of amyotrophic lateral sclerosis. Arch Neurol. 1998;55(1):936.Google Scholar
34.Desnuelle, C, Dib, M, Garrel, C, Favier, A.A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2(1):918.Google Scholar
35.Kwieciński, H, Janik, P, Jamrozik, Z, Opuchlik, A.[The effect of selegiline and vitamin E in the treatment of ALS: an open randomized clinical trials]. Neurol Neurochir Pol. 2001;35(1 Suppl):1016.Google Scholar
36.Munsat, TL, Easterday, CS, Levy, S, Wolff, SM, Hiatt, R.Amantadine and guanidine are ineffective in ALS. Neurology. 1981;31(8):10545.Google Scholar
37.Norris, FH Jr, Calanchini, PR, Fallat, RJ, Panchari, S, Jewett, B.The administration of guanidine in amyotrophic lateral sclerosis. Neurology. 1974;24(8):7218.CrossRefGoogle ScholarPubMed
38.Scelsa, SN, MacGowan, DJ, Mitsumoto, H, et al. A, pilot, double-blind, placebo-controlled trial of indinavir in patients with ALS. Neurology. 2005;64(7):1298300.Google Scholar
39.Fareed, GC, Tyler, HR.The use of isoprinosine in patients with amyotrophic lateral sclerosis. Neurology. 1971;21(9):93740.Google Scholar
40.Olson, WH, Simons, JA, Halaas, GW.Therapeutic trial of tilorone in ALS: lack of benefit in a double-blind, placebo-controlled study. Neurology. 1978;28(12):12935.Google Scholar
41.Aggarwal, SP, Zinman, L, Simpson, E, et al; Northeast and Canadian Amyotrophic Lateral Sclerosis consortia. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(5):4818.CrossRefGoogle ScholarPubMed
42.Chiò, A, Borghero, G, Calvo, A, et al; LITALS Study Group. Lithium carbonate in amyotrophic lateral sclerosis: lack of efficacy in a dose-finding trial. Neurology. 2010;75(7):61925.CrossRefGoogle Scholar
43.Olarte, MR, Gersten, JC, Zabriskie, J, Rowland, LP.Transfer factor is ineffective in amyotrophic lateral sclerosis. Ann Neurol. 1979;5(4):3858.Google Scholar
44.Kaufmann, P, Thompson, JL, Levy, G, et al; QALS Study Group. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol. 2009;66(2):23544.Google Scholar
45.Pastula, DM, Moore, DH, Bedlack, RS.Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database of Systematic Reviews 2012, Issue 12. Art. No.: CD005225. DOI: 10.1002/14651858.CD005225.pub3.Google Scholar
46.BiogenIdec.com [homepage on the Internet] News- Press Release Details 2013 Jan 3. [Updated 2013 Jan 3; cited 2013 Apr 29] Available from: http://www.biogenidec.com/press_release_details.aspx?ID=5981&ReqId=1770780Google Scholar
47.Trophos.com [homepage on the Internet] News-Press Release [Updated 2011 Dec 13; cited 2013 Apr 29]. Available from: http://www.trophos.com/news/pr20111213.htmGoogle Scholar
48.The BDNF Study Group (Phase III). A controlled trial of recombinant methionyl human BDNF in ALS. Neurology. 1999;52(7):142733.Google Scholar
49.Lacomblez, L, Bouche, P, Bensimon, G, Meininger, V.A double-blind, placebo-controlled trial of high doses of gangliosides in amyotrophic lateral sclerosis. Neurology. 1989;39(12):16357.Google Scholar
50.Harrington, H, Hallett, M, Tyler, HR.Ganglioside therapy for amyotrophic lateral sclerosis: a double-blind controlled trial. Neurology. 1984;34(8):10835.Google Scholar
51.Smith, RA, Melmed, S, Sherman, B, Frane, J, Munsat, TL, Festoff, BW.Recombinant growth hormone treatment of amyotrophic lateral sclerosis. Muscle Nerve. 1993;16(6):62433.Google Scholar
52.Saccà, F, Quarantelli, M, Rinaldi, C, et al. A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results. J Neurol. 2012;259(1):1328.Google Scholar
53.Beauverd, M, Mitchell, JD, Wokke, JHJ, Borasio, GD.Recombinant human insulin-like growth factor I (rhIGF-I) for the treatment of amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database of Systematic Reviews 2012, Issue 11. Art. No.: CD002064. DOI: 10.1002/14651858.CD002064.pub3.Google Scholar
54.Meininger, V, Bensimon, G, Bradley, WR, et al. Efficacy and safety of xaliproden in amyotrophic lateral sclerosis: results of two phase III trials. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(2):10717.Google Scholar
55.Bongioanni, P, Reali, C, Sogos, V.Ciliary neurotrophic factor (CNTF) for amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database of Systematic Reviews 2004, Issue 3. Art. No.: CD004302. DOI: 10.1002/14651858.CD004302.pub2.Google Scholar
56.Munsat, TL, Taft, J, Jackson, IM, et al. Intrathecal thyrotropin-releasing hormone does not alter the progressive course of ALS: experience with an intrathecal drug delivery system. Neurology. 1992;42(5):104953.Google Scholar
57.Aisen, ML, Sevilla, D, Edelstein, L, Blass, J.A double-blind placebo-controlled study of 3,4-diaminopyridine in amytrophic lateral sclerosis patients on a rehabilitation unit. J Neurol Sci. 1996;138 (1–2):93–6.Google Scholar
58.Mulder, DW, Kurland, LT, Offord, KP, Beard CM. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology. 1986;36(4):5117.Google Scholar
59.Rosen, DR, Siddique, T, Patterson, D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):5962.Google Scholar
60.Lino, MM, Schneider, C, Caroni, P.Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci. 2002;22(12):482532.Google Scholar
61.Wang, L, Sharma, K, Deng, HX, et al. Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis. 2008;29(3):4008.CrossRefGoogle ScholarPubMed
62.Jaarsma, D, Teuling, E, Haasdijk, ED, De Zeeuw, CI, Hoogenraad, CC.Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci. 2008;28(9):207588.Google Scholar
63.Boillée, S, Yamanaka, K, Lobsiger, CS, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312(5778):138992.Google Scholar
64.Yamanaka, K, Boillee, S, Roberts, EA, et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA. 2008;105(21):75949.Google Scholar
65.Yamanaka, K, Chun, SJ, Boillee, S, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008;11(3):2513.Google Scholar
66.Lobsiger, CS, Boillee, S, McAlonis-Downes, M, et al. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci USA. 2009;106(11):446570.Google Scholar
67.Wang, L, Pytel, P, Feltri, ML, Wrabetz, L, Roos, RP.Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice. Neurobiol Dis. 2012;48(1):527.Google Scholar
68.Wong, M, Martin, LJ.Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet. 2010;1911):2284302.Google Scholar
69.Saxena, S, Cabuy, E, Caroni, P.A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci. 2009;12(5):62736.Google Scholar
70.Molofsky, AV, Krencik, R, Ullian, EM, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012;26(9):891907.Google Scholar
71.Al-Chalabi, A, Fang, F, Hanby, MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry. 2010;81(12):13246.Google Scholar
72.Scott, S, Kranz, JE, Cole, J, et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler. 2008;9(1):415.Google Scholar
73.Brooks, BR. Natural history of ALS: symptoms, strength, pulmonary function, and disability. Neurology. 1996;47(4 Suppl 2):S7181; discussion S81–2.Google Scholar
74.Liao, B, Zhao, W, Beers, DR, Henkel, JS, Appel, SH.Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol. 2012;237(1):14752.Google Scholar
75.Crosio, C, Valle, C, Casciati, A, Iaccarino, C, Carrì, MT.Astroglial inhibition of NF-ϰB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS). PLoS One. 2011;6(3):e17187.Google Scholar
76.Lomen-Hoerth, C.Amyotrophic lateral sclerosis from bench to bedside. Semin Neurol. 2008;28(2):20511.Google Scholar
77.Gordon, PH, Cheung, YK, Levin, B, et al; Combination Drug Selection Trial Study Group. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph Lateral Scler. 2008;9(4):21222.Google Scholar
78.Lattante, S, Conte, A, Zollino, M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology. 2012;79(1):6672.Google Scholar
79.Cudkowicz, ME, McKenna-Yasek, D, Sapp, PE, et al. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol. 1997;41(2):21021.Google Scholar
80.van, Blitterswijk M, van Es, MA, Hennekam, EA, et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(17):377684.Google Scholar
81.Alexander, GM, Erwin, KL, Byers, N, et al. Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS. Brain Res Mol Brain Res. 2004;130(1–2):715.Google Scholar
82.Henriques, A, Pitzer, C, Schneider, A.Characterization of a novel SOD-1(G93A) transgenic mouse line with very decelerated disease development. PLoS One. 2010;5(11):e15445.Google Scholar
83.Aggarwal, A, Nicholson, G.Normal complement of motor units in asymptomatic familial (SOD1 mutation) amyotrophic lateral sclerosis carriers. J Neurol Neurosurg Psychiatry. 2001;71(4):47881.Google Scholar
84.Aggarwal, A, Nicholson, G.Detection of preclinical motor neurone loss in SOD1 mutation carriers using motor unit number estimation. J Neurol Neurosurg Psychiatry. 2002;73(2):199201.CrossRefGoogle ScholarPubMed
85.Siddique, T.Molecular genetics of familial amyotrophic lateral sclerosis. Adv Neurol. 1991;56:22731.Google Scholar
86.Valdmanis, PN, Daoud, H, Dion, PA, Rouleau, GA.Recent advances in the genetics of amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep. 2009;9(3):198205.Google Scholar
87.Andersen, PM, Al-Chalabi, A.Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol. 2011;7(11):60315.Google Scholar
88.Smith, RA, Miller, TM, Yamanaka, K, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116(8):22906.Google Scholar
89.Wang, H, Ghosh, A, Baigude, H, et al. Therapeutic gene silencing delivered by a chemically modified small interfering RNA against mutant SOD1 slows amyotrophic lateral sclerosis progression. J Biol Chem. 2008;283(23):1584552.Google Scholar
90.Urushitani, M, Ezzi, SA, Julien, JP.Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2007;104(7):2495500.Google Scholar
91.Wang, L, Grisotti, G, Roos, RP. Mutant SOD1 knockdown in all cell types ameliorates disease in G85R SOD1 mice with a limited additional effect over knockdown restricted to motor neurons. J Neurochem. 2010;113(1):16674.Google Scholar
92.Brown, P, Gibbs, CJ Jr, Rodgers-Johnson, P, et al. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol. 1994;35(5):51329.CrossRefGoogle ScholarPubMed
93.Fraser, H, Behan, W, Chree, A, Crossland, G, Behan, P.Mouse inoculation studies reveal no transmissible agent in amyotrophic lateral sclerosis. Brain Pathol. 1996;6(2):8999.Google Scholar
94.Chia, R, Tattum, MH, Jones, S, Collinge, J, Fisher, EM, Jackson, GS.Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS One. 2010;5(5):e10627.Google Scholar
95.Grad, LI, Guest, WC, Yanai, A, et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA. 2011;108(39):16398403.Google Scholar
96.Wang, L, Deng, HX, Grisotti, G, Zhai, H, Siddique, T, Roos, RP.Wildtype SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse. Hum Mol Genet. 2009;18(9):164251.Google Scholar
97.Ralph, GS, Radcliffe, PA, Day, DM, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 2005;11(4):42933.Google Scholar
98.Raoul, C, Abbas-Terki, T, Bensadoun, JC, et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med. 2005;11(4):4238.Google Scholar
99.King, OD, Gitler, AD, Shorter, J.The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012;1462:6180.Google Scholar
100.Neumann, M, Sampathu, DM, Kwong, LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):1303.Google Scholar
101.Arai, T, Hasegawa, M, Akiyama, H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):60211.Google Scholar
102.Kwiatkowski, TJ Jr, Bosco, DA, Leclerc, AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):12058.Google Scholar
103.Vance, C, Rogelj, B, Hortobágyi, T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):120811.Google Scholar
104.Ticozzi, N, Vance, C, Leclerc, AL, et al. Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):28590.Google Scholar
105.Couthouis, J, Hart, MP, Shorter, J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci USA. 2011;108(52):2088190.Google Scholar
106.Couthouis, J, Hart, MP, Erion, R, et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet. 2012;21(13):2899911.Google Scholar
107.Kim, HJ, Kim, NC, Wang, YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013 Mar 3. [Epub ahead of print].Google Scholar
108.Johnson, BS, McCaffery, JM, Lindquist, S, Gitler AD. A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA. 2008;105(17):643944.Google Scholar
109.Daigle, JG, Lanson, NA Jr, Smith, RB, et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet. 2013;22(6):1193205.Google Scholar
110.Gilks, N, Kedersha, N, Ayodele, M, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 2004;15(12):538398.Google Scholar
111.Johnson, BS, Snead, D, Lee, JJ, McCaffery, JM, Shorter, J, Gitler, AD.TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem. 2009;284(30):2032939.Google Scholar
112.Fujii, R, Okabe, S, Urushido, T, et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol. 2005;15(6):58793.Google Scholar
113.Kiebler, MA, Bassell, GJ.Neuronal RNA granules: movers and makers. Neuron. 2006;51(6):68590.Google Scholar
114.Tolino, M, Köhrmann M, Kiebler, MA.RNA-binding proteins involved in RNA localization and their implications in neuronal diseases. Eur J Neurosci. 2012;35(12):181836.Google Scholar
115.Polymenidou, M, Lagier-Tourenne, C, Hutt, KR, et al. Long premRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):45968.Google Scholar
116.Gsponer, J, Babu, MM.Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Rep. 2012;2(5):142537.Google Scholar
117.Ayala, YM, De Conti, L, Avendaño-Váquez, SE, et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 2011;30(2):27788.Google Scholar
118.Xu, YF, Gendron, TF, Zhang, YJ, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. 2010;30(32):108519.Google Scholar
119.Patz, S, Trattnig, C, Grünbacher, G, et al. More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs and proteins. J Neurotrauma. 2013 Jan 29. [Epub ahead of print].Google Scholar
120.Colombrita, C, Onesto, E, Megiorni, F, et al. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem. 2012;287(19):1563547.Google Scholar
121.Hetz, C.The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89102.Google Scholar
122.Lilienbaum, A.Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol. 2013;4(1):126.Google Scholar
123.Spriggs, KA, Bushell, M, Willis, AE.Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010;40(2):22837.Google Scholar
124.Ilieva, EV, Ayala, V, Jové, M, et al. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain. 2007;130(Pt12):311123.Google Scholar
125.Kedersha, NL, Gupta, M, Li, W, Miller, I, Anderson, P.RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147(7):143142.Google Scholar
126.Sharp, PS, Dick, JR, Greensmith, L.The effect of peripheral nerve injury on disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neuroscience. 2005;130(4):897910.Google Scholar
127.Hu, Y, Park, KK, Yang, L, et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron. 2012;73(3):44552.Google Scholar
128.Reineke, LC, Lloyd, RE.Diversion of stress granules and P-bodies during viral infection. Virology. 2013;436(2):25567.Google Scholar
129.Silva, MT, Leite, AC, Alamy, AH, et al. ALS syndrome in HTLV-I infection. Neurology. 2005;65(8):13323.Google Scholar
130.Silva, MT, Harab, RC, Leite, AC, Schor, D, Araújo, A, Andrada-Serpa, MJ.Human, Tlymphotropic virus type 1 (HTLV-1) proviral load in asymptomatic carriers, HTLV-1-associated myelopathy/tropical spastic paraparesis, and other neurological abnormalities associated with HTLV-1 infection. Clin Infect Dis. 2007;44(5):68992.Google Scholar
131.Douville, R, Liu, J, Rothstein, J, Nath, A.Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol. 2011;69(1):14151.Google Scholar
132.Dion, PA, Daoud, H, Rouleau, GA.Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet. 2009;10(11):76982.Google Scholar
133.McGuire, V, Longstreth, WT Jr, Koepsell, TD, van Belle, G.Incidence of amyotrophic lateral sclerosis in three counties in western Washington state. Neurology. 1996;47(2):5713.Google Scholar
134.McComas, AJ.Neuromuscular function and disorders. London: Butterworths; 1977.Google Scholar
135.Loeb, LA, Wallace, DC, Martin, GM.The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA. 2005 Dec 27;102(52):1876970.Google Scholar
136.Harding, DI, Greensmith, L, Mason, M, Anderson, PN, Vrbova, G.Overexpression of GAP-43 induces prolonged sprouting and causes death of adult motoneurons. Eur J Neurosci. 1999;11:223742.Google Scholar
137.Jiang, F, Li, WP, Turnbull, J.Progression and survival in GAP-43/SOD-1 double transgenic mice. Amyotroph Lateral Scler. 2004;5(S2):945.Google Scholar
138.Parhad, IM, Oishi, R, Clark, AW.GAP-43 gene expression is increased in anterior horn cells of amyotrophic lateral sclerosis. Ann Neurol. 1992;31(6):5937.Google Scholar
139.Park, DS, Levine, B, Ferrari, G, Greene, LA.Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci. 1997;17(23):897583.Google Scholar
140.Imai, T, Tokunaga, A, Yoshida, T, et al. The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol. 2001;21(12):3888900.Google Scholar
141.Nguyen, MD, Boudreau, M, Kriz, J, Couillard-Després, S, Kaplan, DR, Julien, JP.Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci. 2003;23(6):213140.Google Scholar
142.Sun, J, Liu, Y, Aballay, A.Organismal regulation of XBP-1-mediated unfolded protein response during development and immune activation. EMBO Rep. 2012;13(9):85560.Google Scholar
143.Giese, A, Brown, DR, Groschup, MH, Feldmann, C, Haist, I, Kretzschmar, HA.Role of microglia in neuronal cell death in prion disease. Brain Pathol. 1998;8(3):44957.Google Scholar
144.Barbeito, AG, Mesci, P, Boillée, S.Motor neuron-immune interactions: the vicious circle of ALS. J Neural Transm. 2010;117(8):9811000.Google Scholar
145.Wang, L, Popko, B, Roos, RP.The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet. 2011;20(5):100815.Google Scholar
146.Chestnut, BA, Chang, Q, Price, A, Lesuisse, C, Wong, M, Martin, LJ.Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci. 2011;31(46):1661936.Google Scholar
147.Moreno, JA, Radford, H, Peretti, D, et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature. 2012;485(7399):50711.Google Scholar
148.Brundin, P, Melki, R, Kopito, R.Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010 Apr;11(4):301.Google Scholar
149.Silverberg, GD, Mayo, M, Saul, T, Fellmann, J, Carvalho, J, McGuire, D.Continuous CSF drainage in AD: results of a double-blind, randomized, placebo-controlled study. Neurology. 2008;71(3):2029.Google Scholar