Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T15:56:57.331Z Has data issue: false hasContentIssue false

Transfer and Interference in Amygdaloid Kindling in Cats

Published online by Cambridge University Press:  03 July 2018

Akira Wake
Affiliation:
University of British Columbia, Vancouver, B.C.
Juhn A. Wada*
Affiliation:
University of British Columbia, Vancouver, B.C.
*
2075 Westbrook Place, U.B.C. Campus, Vancouver, B.C., Canada V6T 1W5.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Examination of the effects of primary site kindling upon the development of secondary site amygdaloid kindling in cats showed that the former exerts powerful positive as well as negative after effects upon the latter. The positive after effect appears to be directed towards establishing a linkage between the secondary site and the Stage 6 generalized convulsive mechanism. The negative after effects were strikingly similar to those observed in animals with forebrain bisection subjected to amygdaloid kindling, suggesting that it is primarily directed towards functional accessibility of the cerebral structures interconnected by the forebrain commissure. The similarity of the findings in animals with anterior neocortical lesions supports such an assumption. The transient nature of the negative after effects was indicated by the development of a ‘normal’ clinical ictal pattern from the secondary site when it occurred spontaneously. Secondary site kindling exerted similar but less prominent negative after effects when the primary site was re-tested. Stage 6 seizure was elicited upon the first trial, however.

Résumé

Résumé

L’examen des effets du kindling du site primaire sur le développement du kindling amygdalien du site secondaire chez les chats montre que le premier exerce de puissants effets-seconds positifs ou négatifs sur le dernier. L’effet-second positif semble être dirigé vers l’établissernent d’un lien entre le site secondaire et le mécanisme convulsif généralisé de stage 6. Les effets-seconds négatifs étaient remarquablement similaires à ceux observés chez les animaux avec dissection du télencéphale soumis à un kindling amygdalien, suggérant que celui-ci est principalement dirigé vers l’accessibilité fonctionnelle des structures cérébrales reliées par la commissure du télencéphale La similarité des résultats chez les animaux avec des lésions néocorticales appuie une telle hypothèse. La nature transitoire des effets-seconds négatifs est indiquée par le développement d’un mode ictal clinique “normal” du site secondaire quand ceux-ci surviennent spontanément. Le kindling du site secondaire produisait des effets-seconds négatifs semblables, mais moins marqués quand le site primaire subissait une seconde épreuve. La crise de stage 6 était toutefois élucidée dès le premier essai.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1977

References

Burnham W., McIntyre (1971) Epilep-togenic Modification of the Rat Forebrain by Direct and Trans-synaptic Stimulation. Unpublished Doctoral Dissertation McGill University, Quebec, Canada.Google Scholar
Goddard, G. F. (1967) Development of Epileptic Seizures Through Brain Stimulation at Low Intensity Nature, 214: 10201021 Google Scholar
Goddard, G. V., McIntyre, D. C. and Leech, C. K. (1969) A Permanent Change in Brain Function Resulting from Daily Electrical Stimulation. Experimental Neurology, 25: 295330.Google Scholar
McIntyre, D. C. and Goddard, G. V. (1973) Transfer, Interference and Spontaneous Recovery of Convulsions Kindled from the Rat Amygdala. Electroence-phalography & Clinical Neurophysiology, 35: 533543.CrossRefGoogle ScholarPubMed
Racine, R. (1969) The Modification of Afterdischarge and Convulsive Behavior in the Rat by Electrical Stimulation. Unpublished Doctoral Dissertation, McGill University, Quebec, Canada.Google Scholar
Racine, R. (1972). Modification of Seizure Activity by Electrical Stimulation: II. Motor Seizure. Electroenceph. Clin. Neurophysiol. 32: 281294.Google Scholar
Rodin, E., Onuma, T. Wasson, S., Porzak, J., and Rodin, M. (1971) Neurophysiological Mechanisms Involved in Grand Mai Seizures Induced by Metrazol and Megimide. Electroencephalography & Clinical Neurophysiology 30: 6272.Google Scholar
Sato, M. (1975) Hippocampal Seizure and Secondary Epileptogenesis with Kindled Cat Preparations. Folia Psychiatria et Neurologia Japonica 29: 239250.Google ScholarPubMed
Tanaka, A. (1972) Progressive Changes of Behavioral and Electroencephalographic Responses to Daily Amygdaloid Stimulations in Rabbits. Fukuoka Med. Journal 63/5: 152164.Google Scholar
Wada, J. A. and Osawa, T. (1976) Spontaneous Recurrent Seizure Stage Induced by Daily Electric Amygdaloid Stimulation in Senegalese Baboons (Papio papio). Neurology 26: 273286.CrossRefGoogle ScholarPubMed
Wada, J. A., Osawa, T., Sato, M., Wake, A., Corcoran, M. E., and Troupin, A. S. (1976) Acute Anticonvul-sant Effects of Diphenylhydantoin, Phenobarbital, and Carbamazepine: A Combined Electroclinical and Serum Level Study in Amygdaloid Kindled Cats and Baboons. Epilepsia 17: 7788.Google Scholar
Wada, J. A. and Sato, M. (1974) Generalized Convulsive Seizures Induced by Daily Electrical Stimulation of the Amygdala in Cats. Neurology 24: 565574.Google Scholar
Wada, J. A., Sato, M., Green, J., and Troupin, A. S. (1976) Prophylactic Effects of Dilantin, Phenobarbital and Carbamazepine Examined in Kindling Cat Preparations. A.M.A. Archives of Neurology 33: 426435.Google Scholar
Wada, J. A. and Wake, A. (1977). Dorsal, Frontal, Orbital and Mesial Frontal Cortical Lesion and Amygdaloid Kindling in Cats. Canadian Journal of Neurological Sciences, in press.Google Scholar