Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-29T11:06:02.515Z Has data issue: false hasContentIssue false

Surface-Based Morphometry Findings Reveal Structural Alterations of the Brain in Meige Syndrome

Published online by Cambridge University Press:  12 December 2024

Yunyu Tang
Affiliation:
Department of Neurosurgery, Peking University People’s Hospital, Beijing, China
Ruen Liu*
Affiliation:
Department of Neurosurgery, Peking University People’s Hospital, Beijing, China
*
Corresponding author: Ruen Liu; Email: [email protected]

Abstract

Objective:

To compare structural alterations in the brains of Meige syndrome (MS) patients with those of healthy controls (HCs) by using surface-based morphometry (SBM) and compare structural differences between the brains of MS patients with sleep disorders and those of MS patients without sleep disorders.

Methods:

We investigated cortical surface parameters in 42 MS patients and 30 HCs. T1-weighted images were acquired and processed using CAT12 to perform vertexwise between-group comparisons of cortical thickness, gyrification, cortical complexity and sulcus depth with validated quality control protocols. We also performed SBM to analyze data from 19 patients with sleep disorders and 23 patients without sleep disorders.

Results:

Compared with HCs, MS patients had differences in large clusters of cortical regions, especially in postcentral, precentral, superior frontal and paracentral thickness. Differences were also observed in the parietal and occipital areas. Among MS patients with and without sleep disorders, altered cortical complexity and sulcal depth were observed.

Conclusions:

This study strongly suggested that MS patients have cortical structural abnormalities compared with HCs, thus elucidating the underlying pathophysiology of motor and nonmotor symptoms in MS patients.

Résumé

RÉSUMÉAltérations de certaines structures du cerveau, observées à la morphométrie surfacique chez des patients atteints du syndrome de Meige Objectifs :

L’étude visait à comparer, par morphométrie surfacique (MS), les changements structuraux qui se produisent dans le cerveau chez les patients atteints du syndrome de Meige (SM) avec les parties correspondantes chez des témoins en bonne santé (TBS), ainsi qu’à comparer les différences de structure du cerveau entre les patients qui éprouvent des troubles du sommeil et ceux qui en sont exempts.

Méthode :

Ont été examinés des paramètres relatifs à la surface corticale chez 42 patients atteints du SM et chez 30 TBS. L’équipe de recherche a d’abord procédé à l’acquisition d’images pondérées en T1, puis au traitement des données à l’aide d’une TDM12 afin d’établir des comparaisons de structures, à partir du vertex, entre les groupes, quant à l’épaisseur du cortex, à la gyrification, à la complexité corticale et à la profondeur du sillon, et ce, selon des protocoles validés du contrôle de la qualité. À cela s’est ajoutée une MS permettant d’analyser les données recueillies chez 19 patients qui avaient des troubles du sommeil (TS) et 23 patients qui n’en avaient pas.

Résultats :

Comparativement aux TBS, les patients atteints du SM présentaient des différences en grosses grappes dans les régions corticales, plus particulièrement en ce qui concerne l’épaisseur des zones postcentrale, précentrale, frontale supérieure et paracentrale. Des différences ont également été observées dans les régions pariétales et occipitale. Enfin, une altération de la complexité corticale et de la profondeur du sillon a été relevée chez les patients atteints du SM qui souffraient ou non de TS.

Conclusion :

Les résultats de l’étude donnent fortement à penser que les patients atteints du SM présentent des anomalies des structures corticales comparativement aux TBS, ce qui expliquerait la physiopathologie sous-jacente des troubles moteurs et non moteurs observés chez ces patients.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

LeDoux, MS. Meige syndrome: what’s in a name? Parkinsonism Relat Disord. 2009;15:483–9. DOI: 10.1016/j.parkreldis.2009.04.006.CrossRefGoogle Scholar
Simonyan, K, Cho, H, Hamzehei Sichani, A, Rubien-Thomas, E, Hallett, M. The direct basal ganglia pathway is hyperfunctional in focal dystonia. Brain. 2017;140:3179–90. DOI: 10.1093/brain/awx263.CrossRefGoogle ScholarPubMed
Hao, Q, Lv, G, Zheng, W, et al. Comparison of GPi-DBS, STN-DBS, and pallidotomy in primary Meige syndrome. Brain Stimul. 2023;16:1450–1. DOI: 10.1016/j.brs.2023.09.023.CrossRefGoogle ScholarPubMed
Hao, QP, Zheng, WT, Zhang, ZH, et al. Subthalamic nucleus deep brain stimulation in primary Meige syndrome: motor and non-motor outcomes. Eur J Neurol. 2024;31:e16121. DOI: 10.1111/ene.16121.CrossRefGoogle ScholarPubMed
Goto, M, Abe, O, Hagiwara, A, et al. Advantages of using both voxel- and surface-based morphometry in cortical morphology analysis: a review of various applications. Magn Reson Med Sci. 2022;1:4157. DOI: 10.2463/mrms.rev.2021-0096.CrossRefGoogle Scholar
Ghosh, A, Kaur, S, Shah, R, et al. Surface-based brain morphometry in schizophrenia vs. cannabis-induced psychosis: a controlled comparison. J Psychiat Res. 2022;155:286–94. DOI: 10.1016/j.jpsychires.2022.09.034.CrossRefGoogle ScholarPubMed
Defazio, G, Hallett, M, Jinnah, HA, Conte, A, Berardelli, A. Blepharospasm 40 years later. Mov Disord. 2017;32:498509. DOI: 10.1002/mds.26934.CrossRefGoogle ScholarPubMed
Ray, S, Kutty, B, Pal, PK, Yadav, R. Sleep and other non-motor symptoms in patients with idiopathic Oromandibular dystonia and meige syndrome: a questionnaire-based study. Ann Indian Acad Neurol. 2021;24:351–5. DOI: 10.4103/aian.AIAN_906_20.CrossRefGoogle ScholarPubMed
Burke, RE, Fahn, S, Marsden, CD, Bressman, SB, Moskowitz, C, Friedman, J. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35:73–7. DOI: 10.1212/wnl.35.1.73.CrossRefGoogle ScholarPubMed
Buysse, DJ, Reynolds Iii, CF, Monk, TH, Berman, SR, Kupfer, DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Research. 1989;28:193213. DOI: 10.1016/0165-1781(89)90047-4.CrossRefGoogle ScholarPubMed
Christian, G, Robert, D, Paul, MT, Florian, K, Eileen, L, The Alzheimer’s Disease Neuroimaging Initiative. A computational anatomy toolbox for the analysis of structural MRI data. Gigascience, 2022;13;giae049, 10.1101/2022.06.11.495736Google Scholar
Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:95113. DOI: 10.1016/j.neuroimage.2007.07.007.CrossRefGoogle ScholarPubMed
Dahnke, R, Yotter, RA, Gaser, C. Cortical thickness and central surface estimation. Neuroimage. 2013;65:336–48. DOI: 10.1016/j.neuroimage.2012.09.050.CrossRefGoogle ScholarPubMed
Yotter, RA, Nenadic, I, Ziegler, G, Thompson, PM, Gaser, C. Local cortical surface complexity maps from spherical harmonic reconstructions. NeuroImage. 2011;56:961–73. DOI: 10.1016/j.neuroimage.2011.02.007.CrossRefGoogle ScholarPubMed
Defazio, G, Berardelli, A, Hallett, M. Do primary adult-onset focal dystonias share aetiological factors? Brain. 2007;130:1183–93. DOI: 10.1093/brain/awl355.CrossRefGoogle ScholarPubMed
Wu, Y, Zhang, C, Li, Y, et al. Imaging insights of isolated idiopathic dystonia: voxel-based morphometry and activation likelihood estimation studies. Front Neurol. 2022;13:823882. DOI: 10.3389/fneur.2022.CrossRefGoogle ScholarPubMed
Martino, D, Di Giorgio, A, D’Ambrosio, E, et al. Cortical gray matter changes in primary blepharospasm: a voxel-based morphometry study. Mov Disord. 2011;15:1907–12. DOI: 10.1002/mds.23724.CrossRefGoogle Scholar
Nguyen, P, Kelly, D, Glickman, A, et al. Abnormal neural responses during reflexive blinking in blepharospasm: an event-related functional MRI study. Mov Disord. 2020;35:1173–80. DOI: 10.1002/mds.28042.CrossRefGoogle ScholarPubMed
Feng, L, Yin, D, Wang, X, et al. Brain connectivity abnormalities and treatment-induced restorations in patients with cervical dystonia. Eur J Neurol. 2021;28:1537–47. DOI: 10.1111/ene.14695.CrossRefGoogle ScholarPubMed
Zhang, M, Huang, X, Li, B, Shang, H, Yang, J. Gray matter structural and functional alterations in idiopathic blepharospasm: a multimodal meta-analysis of VBM and functional neuroimaging studies. Front Neurol. 2022;13:889714. DOI: 10.3389/fneur.2022.889714.CrossRefGoogle ScholarPubMed
Yang, A, Liu, B, Lv, K, et al. Altered coupling of resting-state cerebral blood flow and functional connectivity in Meige syndrome. Front Neurosci. 2023;17:1152161. DOI: 10.3389/fnins.2023.CrossRefGoogle ScholarPubMed
Sommer, M, Ruge, D, Tergau, F, Beuche, W, Altenmüller, E, Paulus, W. Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm. Mov Disord. 2002;17:1017–25. DOI: 10.1002/mds.10205.CrossRefGoogle ScholarPubMed
Xu, J, Luo, Y, Peng, K, et al. Supplementary motor area driving changes of structural brain network in blepharospasm. Brain. 2023;146:1542–53. DOI: 10.1093/brain/awac341.CrossRefGoogle ScholarPubMed
Huang, X, Zhang, M, Li, B, Shang, H, Yang, J. Structural and functional brain abnormalities in idiopathic cervical dystonia: a multimodal meta-analysis. Parkinsonism Relat Disord. 2022;103:153–65. DOI: 10.1016/j.parkreldis.2022.08.029.CrossRefGoogle ScholarPubMed
Prell, T, Peschel, T, Köhler, B, et al. Structural brain abnormalities in cervical dystonia. BMC Neurosci. 2013;14:123. DOI: 10.1186/1471-2202-14-123.CrossRefGoogle ScholarPubMed
Haslinger, B, Noé, J, Altenmüller, E, et al. Changes in resting-state connectivity in musicians with embouchure dystonia. Mov Disord. 2017;32:450–8. DOI: 10.1002/mds.26893.CrossRefGoogle ScholarPubMed
Aminoff, EM, Kveraga, K, Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn Sci. 2013;17:379–90. DOI: 10.1016/j.tics.2013.06.009.CrossRefGoogle ScholarPubMed
Echávarri, C, Aalten, P, Uylings, HB, et al. Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease. Brain Struct Funct. 2011;215:265–71. DOI: 10.1007/s00429-010-0283-8.CrossRefGoogle Scholar
Coghill, RC. Pain: neuroimaging. In: Squire, LR, ed. Encyclopedia of neuroscience. Academic Press; 2009: 409–14.CrossRefGoogle Scholar
Pflugshaupt, T, Nösberger, M, Gutbrod, K, Weber, KP, Linnebank, M, Brugger, P. Bottom-up visual integration in the medial parietal lobe. Cerebral Cortex. 2014;26:943–9. DOI: 10.1093/cercor/bhu256.CrossRefGoogle ScholarPubMed
Jochim, A, Li, Y, Gora-Stahlberg, G, et al. Altered functional connectivity in blepharospasm/orofacial dystonia. Brain Behav. 2018;8:e00894. DOI: 10.1002/brb3.894.CrossRefGoogle ScholarPubMed
Hanekamp, S, Simonyan, K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp. 2020;41:3253–65. DOI: 10.1002/hbm.25012.CrossRefGoogle ScholarPubMed
Rolls, ET. Limbic structures, emotion, and memory. reference module in neuroscience and biobehavioral psychology. Elsevier; 2017. DOI: 10.1016/B978-0-12-809324-5.06857-7.Google Scholar
Chen, C, Liu, Z, Zuo, J, et al. Decreased cortical folding of the Fusiform Gyrus and its hypoconnectivity with sensorimotor areas in major depressive disorder. J Affect Disord. 2021;1:657–64. DOI: 10.1016/j.jad.2021.08.148.CrossRefGoogle Scholar
Yin, T, Lan, L, Tian, Z, et al. Parahippocampus hypertrophy drives gray matter morphological alterations in migraine patients without aura. J Headache Pain. 2023;24:53. DOI: 10.1186/s10194-023-01588-z.CrossRefGoogle ScholarPubMed
To, WT, Song, J-J, Mohan, A, De Ridder, D, Vanneste, S. Chapter 23 - Thalamocortical dysrhythmia underpin the log-dynamics in phantom sounds. In: Langguth, B, Kleinjung, T, De Ridder, D, Schlee, W, Vanneste, S, eds. Progress in Brain Research. Elsevier; 2021, 511–26.Google Scholar
Hou, Y, Zhang, L, Wei, Q, et al. Impaired topographic organization in patients with idiopathic blepharospasm. Front Neurol. 2021;12:708634. DOI: 10.3389/fneur.2021.708634.CrossRefGoogle ScholarPubMed
Reetz, K, Lencer, R, Hagenah, JM, et al. Structural changes associated with progression of motor deficits in Spinocerebellar ataxia 17. The Cerebellum. 2010;9:210–7. DOI: 10.1007/s12311-009-0150-4.CrossRefGoogle ScholarPubMed
Cheng, W, Rolls, ET, Ruan, H, Feng, J. Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiatry. 2018;1:1052–61. DOI: 10.1001/jamapsychiatry.2018.1941.CrossRefGoogle Scholar
Leichnetz, GR. Connections of the medial posterior parietal cortex (area 7m) in the monkey. Anat Rec. 2001;1:215–36. DOI: 10.1002/ar.1082.CrossRefGoogle Scholar
Kim, SY, Lee, KH, Lee, H, et al. Negative life stress, sleep disturbance, and depressive symptoms: the moderating role of anterior insula activity in response to sleep-related stimuli. J Affect Disord. 2022;15:553–8. DOI: 10.1016/j.jad.2021.12.072.CrossRefGoogle Scholar
Wang, Z, Fei, X, Liu, X, et al. REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex. Nat Commun. 2022;13:6896. DOI: 10.1038/s41467-022-34720-9.CrossRefGoogle ScholarPubMed
Brown, RE, Basheer, R, McKenna, JT, Strecker, RE, McCarley, RW. Control of sleep and wakefulness. Physiol Rev. 2012;92:1087–187. DOI: 10.1152/physrev.00032.2011.CrossRefGoogle ScholarPubMed
Pantano, P, Totaro, P, Fabbrini, G, et al. A transverse and longitudinal MR imaging voxel-based morphometry study in patients with primary cervical dystonia. AJNR Am J Neuroradiol. 2011;32:81–4. DOI: 10.3174/ajnr.CrossRefGoogle ScholarPubMed