Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-16T15:02:02.277Z Has data issue: false hasContentIssue false

Striatonigral Degeneration: Iron Deposition in Putamen Correlates with the Slit-like Void Signal of Magnetic Resonance Imaging

Published online by Cambridge University Press:  18 September 2015

Anthony E. Lang*
Affiliation:
Morton and Gloria Shulman Movement Disorder Centre Division of Neurology and Department of Pathology (Neuropathology)
Terry Curran
Affiliation:
Morton and Gloria Shulman Movement Disorder Centre Division of Neurology and Department of Pathology (Neuropathology)
John Provias
Affiliation:
The Toronto Hospital, Toronto
Catherine Bergeron
Affiliation:
The Toronto Hospital, Toronto
*
Division of Neurology, The Toronto Hospital, 399 Bathurst Street. MP 11–304, Toronto, Ontario. Canada M5T 2S8
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report three patients with striatonigral degeneration highlighting the correlation between magnetic resonance imaging (MRI) and the pathological changes. The “slit-like void signal” observed in the putamen is typical of striatonigral degeneration and can be used to assist diagnosis during life. Our histochemical studies support the concept that increased iron deposition in the putamen is responsible for this MRI picture.

Résumé:

Résumé:

Dégénérescence striatonigrale: les dépôts de fer dans le putamen sont córreles au signal (“slit-like void”) de l’imagerie par résonance magnétique. Nous rapportons les cas de trois patients atteints de dégénérescence striatonigrale qui illustrent la corrélation qui existe entre l’imagerie par résonance magnétique nucléaire (RMN) et les changements anatomopathologiques. Le signal (“slit-like void”) observé dans le putamen est typique de la dégénérescence striatonigrale et peut être utilisé pour aider au diagnostic du vivant du patient. Nos études histochimiques appuient le concept que des dépôts accrus de fer dans le putamen sont responsables de cette image à la RMN.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1994

References

REFERENCES

1. Hughes, AJ, Daniel, SE, Kilford, L, Lees, AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1992; 55: 181184.CrossRefGoogle ScholarPubMed
2. Drayer, BP, Olanow, W, Burger, P, et al. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 1986; 159:493498.CrossRefGoogle Scholar
3. Stern, MB, Braffman, BH, Skolnick, BE, Hurtig, HI, Grossman, RI. Magnetic resonance imaging in Parkinson’s disease and parkinsonian syndromes. Neurology 1989; 39: 15241526.CrossRefGoogle ScholarPubMed
4. Parati, EA, Fetoni, V, Geminiani, GC, et al. Response to L-Dopa in Multiple System Atrophy. Clin Neuropharmacol 1993; 16: 139144.CrossRefGoogle ScholarPubMed
5. Pasatakia, B, Polinsky, R, De Chiro, G, et al. Multiple system atrophy (Shy-Drager syndrome): MR imaging. Radiology 1990; 174: 609696.Google Scholar
6. Guttman, M, Lang, AE, Garnett, ES, et al. Regional cerebral glucose metabolism in SLE chorea: further evidence that striatal hypometabolism is not the correlate of chorea. Mov Disord 1987; 2:201210.CrossRefGoogle Scholar
7. Garnett, ES, Lang, AE, Chirakal, R, Firnau, G, Nahmias, C. A rostrocaudal gradient for aromatic acid decarboxylase in the human striatum. Can J Neurol Sci 1987; 14: 444447.CrossRefGoogle ScholarPubMed
8. Papp, MI, Kahn, JE, Lantos, PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager Syndrome). J Neurol Sci 1989; 94: 79100.Google Scholar
9. Lantos, PL, Papp, MI. Cellular pathology of multiple system atrophy: a review. J Neurol Neurosurg Psychiatry 1994; 57: 129133.CrossRefGoogle ScholarPubMed
10. Hock, A, Demmel, U, Schicha, K. Trace element concentration in human brain. Brain 1975; 98: 4964.Google Scholar
11. Morris, CM, Candy, JM, Bloxham, CA, Edwardson, JA. Immunocytochemical localization of transferrin in the human brain. Acta Anatomica 1992; 143: 1418.Google Scholar
12. Hughes, AJ, Colosimo, C, Kleedorfer, B, Daniel, SE. Lees, AJ. The dopaminergic response in multiple system atrophy. J Neurol Neurosurg Psychiatry 1992; 55: 10091013.CrossRefGoogle ScholarPubMed
13. Riley, DE, Lang, AE, Lewis, A, et al. Cortical-basal ganglionic degeneration. Neurology 1990; 40: 12031212.Google Scholar
14. Chen, R, Ashby, P, Lang, AE. Stimulus-sensitive myoclonus in akinetic-rigid syndromes. Brain 1992; 115: 18751888.Google Scholar
15. Rodrigues, ME, Artieda, J, Zubieta, JL, Obeso, JA. Reflex myoclonus in olivopontocerebellar atrophy. J Neurol Neurosurg Psychiatry 1994; 57:316319.CrossRefGoogle Scholar
16. Brooks, DJ, Ibanez, V, Sawle, GV, et al. Differing patterns of striatal 18F-Dopa Uptake in Parkinson’s Disease, Multiple System Atrophy, and Progressive Supranuclear Palsy. Ann Neurol 1990; 28: 547555.Google Scholar
17. Burn, DJ, Sawle, GV, Brooks, DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 1994; 57: 278284.CrossRefGoogle ScholarPubMed
18. Eidelberg, D, Takikawa, S, Moeller, JR, et al. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson’s disease. Ann Neurol 1993; 33: 518527.Google Scholar
19. O’Brien, C, Sung, JH, McGeachie, RE, Lee, MC. Striatonigral degeneration: clinical, MRI and pathological correlation. Neurology 1990; 40:710711.Google Scholar
20. Hallgren, B, Sourander, P. The effect of age on the nonhaem iron in human brain. J Neurochem 1958; 3: 4151.Google Scholar
21. Perl, DP, Good, BS. Comparative techniques for determining cellular iron distribution in brain tissues. Ann Neurol 1992; 32: S76-S81.Google Scholar
22. Kato, S, Meshitsuka, S, Ohama, E, et al. Increased iron content in the putamen of patients with striatonigral degeneration. Acta Neuropathologica 1992; 84: 328330.Google Scholar
23. Drayer, BP. Magnetic resonance imaging and brain iron: Implications in the diagnosis and pathochemistry of movement disorders and dementia. BNI Quarterly 1987; 3: 1530.Google Scholar
24. Schafert, DA, Johnsen, SD, Johnson, PC, Drayer, BP. Magnetic resonance imaging in pathologically proven Hallervorden-Spatz disease. Neurology 1989; 39: 440442.CrossRefGoogle Scholar
25. Chen, JC, Hardy, PA, Kucharczyk, W, et al. MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. Am J Neuroradiol 1993; 14:275281.Google ScholarPubMed
26. Chen, JC, Hardy, PA, Clauberg, M, et al. T2 values in the human brain: comparison with quantitative assays of iron and ferritin. Radiology 1989; 173:521526.CrossRefGoogle ScholarPubMed
27. McGeer, PL, Akiyama, H, Itagaki, S, McGeer, EG. Immune system response in Alzheimer’s disease. Can J Neurol Sci 1989; 16: 516527.CrossRefGoogle ScholarPubMed
28. Kaneko, Y, Kitamoto, T, Tateishi, J. Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol (Berlin) 1989; 79: 129136.Google Scholar
29. Halliwell, B, Gutteridge, JMC. Iron and free radical reactions: two aspects of antioxidant protection. Trends Biochem Sci 1986; 11: 13721375.CrossRefGoogle Scholar
30. The Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 13641371.CrossRefGoogle Scholar
31. McLachlan, DRC, Dalton, AJ, Kruck, TPA, Bell, MY, Smith, WL. Intramuscular desferoxamine in patients with Alzheimer’s disease. Lancet 1991; 337: 13041308.Google Scholar