Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:54:51.789Z Has data issue: false hasContentIssue false

Standardization and Detailed Characterization of the Syngeneic Fischer/F98 Glioma Model

Published online by Cambridge University Press:  02 December 2014

David Mathieu
Affiliation:
The Department of Surgery, Division of Neurosurgery and Neuro-oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, Quebec, Canada
Roger Lecomte
Affiliation:
Department of Radiobiology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, Quebec, Canada
Ana Maria Tsanaclis
Affiliation:
Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, Quebec, Canada
Annie Larouche
Affiliation:
The Department of Surgery, Division of Neurosurgery and Neuro-oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, Quebec, Canada
David Fortin
Affiliation:
The Department of Surgery, Division of Neurosurgery and Neuro-oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, Quebec, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction:

Adequate animal glioma models are mandatory for the pursuit of preclinical research in neuro-oncology. Many implantation models have been described, but none perfectly emulate human malignant gliomas. This work reports our experience in standardizing, optimizing and characterizing the Fischer/F98 glioma model on the clinical, pathological, radiological and metabolic aspects.

Materials and methods:

F98 cells were implanted in 70 Fischer rats, varying the quantity of cells and volume of implantation solution, and using a micro-infusion pump to minimize implantation trauma, after adequate coordinates were established. Pathological analysis consisted in hematoxylin and eosin (H&E) staining and immunohistochemistry for GFAP, vimentin, albumin, TGF-b1, TGF-b2, CD3 and CD45. Twelve animals were used for MR imaging at 5, 10, 15 and 20 days. Corresponding MR images were compared with pathological slides. Two animals underwent 18F-FDG and 11C-acetate PET studies for metabolic characterization of the tumors.

Results:

Implantation with 1x104 cells produced a median survival of 26 days and a tumor take of 100%. Large infiltrative neoplasms with a necrotic core were seen on H&E. Numerous mitosis, peritumoral infiltrative behavior, and neovascular proliferation were also obvious. GFAP and vimentin staining was positive inside the tumor cells. Albumin staining was observed in the extracellular space around the tumors. CD3 staining was negligible. The MR images correlated the pathologic findings. 18F-FDG uptake was strong in the tumors.

Conclusion:

The standardized model described in this study behaves in a predictable and reproducible fashion, and could be considered for future pre-clinical studies. It adequately mimics the behavior of human malignant astrocytomas.

Résumé:

RÉSUMÉ:

Standardisation et caractérisation détaillée du modèle de gliome syngénique Fischer/F98.

Contexte:

Nous avons besoin de modèles animaux adéquats pour la recherche préclinique sur le gliome en neuro-oncologie. Plusieurs modèles d'implantation ont été décrits, mais aucun ne correspond parfaitement aux gliomes malins chez l'humain. Nous rapportons notre expérience de standardisation, d'optimisation et de caractérisation du modèle de gliome Fisher/F98 du point de vue clinique, anatomopathologique, radiologique et métabolique.

Matériels et méthodes :

Des cellules F98 ont été implantées chez 70 rats Fisher, tout en variant la quantité de cellules et le volume de solution d'implantation au moyen d'une pompe à microinfusion afin de minimiser le traumatisme dû00E0; l'implantation, après avoir établi des paramètres adéquats. En anatomopathologie, nous avons utilisé la coloration H&E et l'immunohistochimie pour la GFAP, la vimentine, l'albumine, le TGF-b1, le TGF-b2, le CD3 et le CD45. Douze animaux ont subi une IRM aux jours 5, 10, 15 et 20. Les images ont été comparées aux lame histopathologiques correspondantes. On a procédé à des études au moyen du PET scan avec les traceurs 18F-FDG et 11C-acétate afin d'étudier le métabolisme des tumeurs chez deux animaux.

Résultats :

Les animaux chez qui on a implanté 1x104 cellules ont eu une survie médiane de 26 jours et une prise d'implant de 100%. Àla coloration H&E, on a observé de larges néoplasmes infiltrants avec un centre nécrotique, ainsi que de nombreuses mitoses, un comportement infiltrant péritumoral et une prolifération néovasculaire. La coloration pour la GFAP et la vimentine étaient positives dans les cellules tumorales. La coloration pour l'albumine était positive dans les espaces extracellulaires autour des tumeurs. La coloration CD3 était négligeable. L'IRM était corrélée aux observations anatomopathologiques. La captation du 18F-FDG dans les tumeurs était importante.

Conclusion :

Le modèle standardisé décrit dans cette étude se comporte de façon prévisible et reproductible et pourrait être utilisé à l'avenir dans les études précliniques. Il simule adéquatement le comportement des astrocytomes malins de l'humain.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Binder, DK, Keles, GE, Aldape, K, Berger, MS: Aggressive glial neoplasms. In Batjer, HH, Loftus, CM, editors. Textbook of neurological surgery, principles and practice, Philadelphia: Lippincott Williams & Wilkins; 2003. p. 127080.Google Scholar
2. Barth, RF. Rat brain tumor models in experimental neuro-oncology. The 9L, C6, T9, F98, RG2(D74), RT-2 and CNS-1 Gliomas. J Neurooncol. 1998;36:91102.Google Scholar
3. Lampson, LA. New animal models to probe brain tumor biology, therapy, and immunotherapy: advantages and remaining concerns. J Neurooncol. 2001;53:27587.Google Scholar
4. Peterson, DL, Sheridan, PJ, Brown, WE Jr. Animal models for brain tumors: historical perspectives and future directions. J Neurosurg. 1994;80:86576.Google Scholar
5. Rama, B, Spoerri, O, Holzgraefe, M, Mennel, HD. Current brain tumour models with particular consideration of the transplantation techniques. Outline of literature and personal preliminary results. Acta Neurochir. 1986;79:3541.Google Scholar
6. Parsa, AT, Chakrabarti, I, Hurley, PT, Chi, JH, Hall, JS, Kaiser, MG, et al. Limitations of the C6/Wistar rat intracerebral glioma model: Implications for evaluating immunotherapy. Neurosurgery. 2000;47:9931000.Google Scholar
7. Fournier, E, Passirani, C, Montero-Menei, C, Colin, N, Breton, P, Sagodira, S, et al. Therapeutic effectiveness of novel 5-fluorouracil-loaded poly(methylidene malonate 2.1.2)-based microspheres on F98 glioma-bearing rats. Cancer. 2003;97:282229.CrossRefGoogle ScholarPubMed
8. Raila, FA, Bowles, AP, Perkins, E, Terrell, A. Sequential imaging and volumetric analysis of an intracerebral C6 glioma by means of a clinical MRI system. J Neurooncol. 1999;43:117.Google Scholar
9. San-Galli, F, Vrignaud, P, Robert, J. Assessment of the experimental model of transplanted C6 glioblastoma in Wistar rats. J Neurooncol. 1989;7:299304.CrossRefGoogle ScholarPubMed
10. Thorsen, F, Ersland, L, Nordli, H, Enger, PO, Huszthy, PC, Lundervold, A, et al. Imaging of experimental rat gliomas using a clinical MR scanner. J Neurooncol. 2003;63:22531.CrossRefGoogle ScholarPubMed
11. Grobben, B, De Deyn, PP, Slegers, H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res. 2002;310:25770.Google Scholar
12. Tonn, JC. Model systems in neurooncology. Acta Neurochir. 2002;83:7983.Google ScholarPubMed
13. Buzzell, GR. The Harderian Gland: Perspectives. Microsc Res Tech. 1996;34:25.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
14. Lecomte, R, Cadorette, J, Richard, P, Rodrigue, S, Rouleau, D. Design and engineering aspects of a high resolution positron tomograph for small animal imaging. IEEE Trans Nucl Sci. 1994;41:144652.CrossRefGoogle Scholar
15. Lecomte, R, Cadorette, J, Rodrigue, S, Lapointe, D, Rouleau, D, Bentourkia, , et al. Initial results from the Sherbrooke avalanche photodiode positron tomography. IEEE Trans Nucl Sci. 1996;43:195257.Google Scholar
16. Marriott, CJ, Cadorette, JE, Lecomte, R, Scasnar, V, Rousseau, J, Van Lier, JE. High resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiodes detectors. J Nucl Med. 1994; 35:13906.Google Scholar
17. Selivanoc, V, Picard, Y, Cadorette, J, Rodrigue, S, Lecomte, R. Detector response models for statistical iterative image reconstruction in high resolution PET. IEEE Trans Nucl Sci. 2000;47:116875.Google Scholar
18. Aas, AT, Brun, A, Blennow, C, Stromblad, S, Salford, LG. The RG2 rat glioma model. J Neurooncol. 1995;23:17583.Google Scholar
19. Auer, RN, Del Maestro, RF, Anderson, R. A simple and reproducible experimental in vivo glioma model. Can J Neurol Sci. 1981;8:32531.Google Scholar
20. Beauchesne, P, Bertrand, S, Revel, R, Pialat, J, Brunon, J, Mornex, F, et al. Development of an intracerebral glioma model in whole body irradiated hairless rats. Anticancer Res. 2000;20:7036.Google ScholarPubMed
21. Engebraaten, O, Hjortland, GO, Hirschberg, H, Fodstad, O. Growth of precultured human glioma specimens in nude rat brain. J Neurosurg. 1999;90:12532.CrossRefGoogle ScholarPubMed
22. Farrell, CI, Stewart, PA, Del Maestro, RF. A new glioma model in rat: the C6 spheroid implantation technique permeability and vascular characterization. J Neurooncol. 1987;4:40315.Google Scholar
23. Kimler, BF. The 9L rat brain tumor model for pre-clinical investigation of radiation-chemotherapy interactions. J Neurooncol. 1994;20:1039.Google Scholar
24. Kruse, CA, Molleston, MC, Parks, EP, Schiltz, PM, Kleinschmidt-DeMasters, BK, Hickey, WF. A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol. 1994;22:191200.Google Scholar
25. Maggio, WW. Rodent glioma models. Methods in Neurosciences. 1996;30:8196.Google Scholar
26. Mella, O, Bjerkvig, R, Schem, BC, Dahl, O, Laerum, OD. A cerebral glioma model for experimental therapy and in vivo invasion studies in syngeneic BD IX rats. J Neurooncol. 1990;9:93104.CrossRefGoogle ScholarPubMed
27. Michailowsky, C, Niura, FK, do Valle, AC, Sonohara, S, Meneguin, TD, Tsanaclis, AMC. Experimental tumors of the central nervous system: standardization of a model in rats using the 9L glioma cells [in Portuguese]. Arq Neuropsiquiatr. 2003;61:23440.Google Scholar
28. Senner, V, Sturm, A, Hoess, N, Wassmann, H, Paulus, W. In vivo glioma model enabling regulated gene expression. Acta Neuropathol. 2000;99:6038.Google Scholar
29. Whittle, IR, Macarthur, DC, Malcolm, GP, Li, M, Washington, K, Ironside, JK. Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumours. J Neurooncol. 1998;36, 23142.CrossRefGoogle ScholarPubMed
30. Zhang, X, Wu, J, Gao, D, Fei, Z, Qu, Y, Jing, J. Development of a rat C6 brain tumor model. Chin Med J. 2002;115:45557.Google Scholar
31. Stojiljkovic, M, Piperski, V, Dacevic, M, Rakic, L, Ruzdijic, S, Kanazir, S. Characterization of 9L glioma model of the Wistar rat. J Neurooncol. 2003;63:17.Google Scholar
32. Wechsler, W, Szymas, J, Bilzer, T, Hossmann, KA. Experimental transplantation gliomas in the adult cat brain. 1.Experimental model and neuropathology. Acta Neurochir. 1989;98:7789.Google Scholar
33. Adam, JF, Elleaume, H, Joubert, A, Biston, MC, Charvet, AM, Balosso, J. Synchrotron radiation therapy of malignant brain glioma loaded with an iodinated contrast agent: First trial on rats bearing F98 gliomas. Int J Radiation Oncology Biol Phys. 2003;57:141326.Google Scholar
34. Barth, RF, Yang, W, Coderre, JA. Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol. 2003;62:6174.Google Scholar
35. Barth, RF, Yang, W, Rotaru, JH, Moeschberger, ML, Boesel, CP, Soloway, AH. Enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. Int J Radiation Oncology Biol Phys. 2000;47:20918.Google Scholar
36. Olivi, A, Ewend, MG, Utsuki, T, Tyler, B, Domb, AJ, Brat, DJ, et al. Interstitial delivery of carboplatin via biodegradable polymers is effective against experimental glioma in the rat. Cancer Chemother Pharmacol. 1996;39:906.Google Scholar
37. Rhines, LD, Sampath, P, Dolan, ME, Tyler, BM, Brem, H, Weingart, J. O6-Benzylguanine potentiates the antitumor effect of locally delivered carmustine against an intracranial rat glioma. Cancer Res. 2000;60:630710.Google Scholar
38. Shen, DHY, Marsee, DK, Schaap, J, Yang, W, Cho, JY, Hinkle, G, et al. Effects of dose, intervention time, and radionuclide on sodium iodide symporter (NIS)-targeted radionuclide therapy. Gene Ther. 2004;11:1619.Google Scholar
39. Von Eckardstein, KL, Patt, S, Zhu, J, Zhang, L, Cervos-Navarro, J, Reszka, R. Short-term neuropathological aspects of in vivo suicide gene transfer to the F98 rat glioblastoma using liposomal and viral vectors. Histol Histopathol. 2001;16:73544.Google Scholar
40. Ko, L, Koestner, A, Wechsler, W. Morphological Characterization of Nitrosourea-induced glioma cell lines and clones. Acta Neuropathol. 1980;51:2331.CrossRefGoogle ScholarPubMed
41. Reifenberger, G, Bilzer, T, Seitz, RJ, Wechsler, W. Expression of vimentin and glial fibrillary acidic protein in ethylnitrosourea-induced rat gliomas and glioma cell lines. Acta Neuropathol. 1989;78:27082.Google Scholar
42. Seitz, RJ, Deckert, M, Wechsler, W. Vascularization of syngenic intracerebral RG2 and F98 rat transplantation tumors. A histochemical and morphometric study by use of ricinus communis agglutinin I. Acta Neuropathol. 1988;76:599605.Google Scholar
43. Jallo, GI, Volkov, A, Wong, C, Carson, BS Sr, Penno, MB. A novel brainstem tumor model: functional and histopathological characterization. Childs Nerv Syst. 2006;22:151925.Google Scholar
44. McLendon, RE, Enterline, DS, Tien, RD, Thorstad, WL, Bruner, JM. Tumors of central neuroepithelial origin. In: Bigner, DD, McLendon, RE, Bruner, JM, editors. Russel & Rubinstein’s Pathology of tumors of the nervous system. 6th ed. London: Arnold;1998. p. 307571.Google Scholar
45. Poduslo, JF, Curran, GL, Wengenack, TM, Malester, B, Duff, K. Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2001;8;55567.Google Scholar
46. Jachimczak, P, Hessdorfer, B, Fabel-Schulte, K, Wismeth, C, Brysch, W, Schlingensiepen, KH. Transforming growth factor-betamediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer. 1996;65:3327.Google Scholar
47. Merzak, A, McCrea, S, Koocheckpour, S, Pilkington, GJ. Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor β1. Br J Cancer. 1994;70:199203.Google Scholar
48. Maxwell, M, Galanopoulos, T, Neville-Golden, J, Antoniades, HN. Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg. 1992;76:799804.CrossRefGoogle ScholarPubMed
49. Mathieu, D, Lamarche, J, Fortin, D. The importance of a syngeneic glioma implantation model: comparison of the F98 cell line in Fischer and Long-Evans rats. The Journal of Applied Research. 2005;5:1725.Google Scholar
50. Kish, PE, Blaivas, M, Strawderman, M, Muraszko, KM, Ross, DA, Ross, BD, et al. Magnetic resonance imaging of ethylnitrosourea-induced rat gliomas: a model for experimental therapeutics of low-grade gliomas. J Neurooncol. 2001;53:24357.Google Scholar
51. Blanchard, J, Mathieu, D, Patenaude, Y, Fortin, D. MR-pathological comparison in F98-Fischer glioma model using a human gantry. Can J Neurol Sci. 2006;33:8691.Google Scholar
52. Wree, A, Goller, HJ, Beck, T. Local cerebral glucose utilization in perfusion-fixed rat brains. J Neurosci Methods. 1995;58:1439.Google Scholar
53. De Witte, O, Lefranc, F, Levivier, M, Salmon, I, Brotchi, J, Goldman, S. FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol. 2000;49:15763.Google Scholar
54. Padma, MV, Said, S, Jacobs, M, Hwang, DR, Dunigan, K, Satter, M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol. 2003;64:22737.Google Scholar
55. Wang, HE, Wu, SY, Chang, CW, Liu, RS, Hwang, LC, Lee, TW, et al. Evaluation of F-18-labeled amino acid derivatives and 18F FDG as PET probes in a brain tumor-bearing animal model. Nucl Med Biol. 2005;32(4):36775.Google Scholar
56. Onson, SD, Welch, MJ. Investigations into tumor accumulation and peroxisome proliferators activated receptor binding by F-18 and C-11 fatty acids. Nucl Med Biol. 2002;29:21116.Google Scholar