Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T17:25:52.814Z Has data issue: false hasContentIssue false

SPECT for Differential Diagnosis of Dementia and Correlation of rCBF with Cognitive Impairment

Published online by Cambridge University Press:  18 September 2015

Alicia Osimani
Affiliation:
Rotman Research Institute of Baycrest Centre for Geriatric Care Behavioral Neurology Program, Baycrest Hospital Division of Neurology, Mount Sinai Hospital, University of Toronto
Masanori Ichise
Affiliation:
Rotman Research Institute of Baycrest Centre for Geriatric Care Department of Radiology (Division of Nuclear Medicine), Mount Sinai Hospital, University of Toronto
Dae-Gyun Chung
Affiliation:
Rotman Research Institute of Baycrest Centre for Geriatric Care Department of Radiology (Division of Nuclear Medicine), Mount Sinai Hospital, University of Toronto
Janice M. Pogue
Affiliation:
Rotman Research Institute of Baycrest Centre for Geriatric Care
Morris Freedman*
Affiliation:
Rotman Research Institute of Baycrest Centre for Geriatric Care Behavioral Neurology Program, Baycrest Hospital Division of Neurology, Mount Sinai Hospital, University of Toronto
*
Baycrest Hospital, Room 4W36, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

99mTc-HM-PAO single photon emission computed tomography (SPECT) was used to image 30 patients referred for the assessment of dementia. SPECT images revealed various patterns of regional cerebral perfusion (rCBF) in the subgroups of patients with the clinical diagnoses of Alzheimer's disease (AD, n = 14), Pick's disease (n = 1), and multi-infarct dementia (n = 7). In three patients, SPECT clarified the clinical differential diagnostic possibilities. Using a relative rCBF quantification technique, the relationship between specific cognitive impairments and rCBF in the AD patients was determined. There was a significant correlation between language impairment and left hemisphere hypoperfusion, whereas, apraxia correlated with hypoperfusion in the left parietal region. Thus, HMPAO SPECT is useful as an aid in the differential diagnosis of dementia and the technique of relative rCBF quantification with SPECT may contribute to the understanding of the clinico-anatomical relations of cognitive deficits in dementia.

Résumé:

RÉSUMÉ:

Nous avons utilisé la tomographie à émetteur gamma au 99mTc-HM-PAO (SPECT) pour investiguer 30 patients référés pour évaluation d'une démence. L'imagerie par le SPECT a montré différents schémas de perfusion cérébrale régionale (rCBF) chez des sous-groupes de patients avec un diagnostic clinique de maladie d'Alzheimer (AD, n = 14), maladie de Pick (n = 1) et démence par infarctus multiples (n = 7). Chez trois patients, le SPECT a clarifié les possibilités quant au diagnostic différentiel. Au moyen d'une technique de quantification relative de la rCBF, nous avons déterminé quelle est la relation entre des altérations cognitives spécifiques et la rCBF chez les patients porteurs d'une maladie d'Alzheimer. Il y avait une corrélation significative entre l'altération du langage et Γ hypoperfusion de l'hémisphère gauche, alors que l'apraxie était corrélée à Γ hypoperfusion de la région pariétale gauche. Le SPECT par HM-PAO aide au diagnostic différentiel de la démence et la technique de quantification relative de la rCBF au moyen du SPECT peut contribuer à la compréhension des relations clinico-anatomiques des déficits cognitifs dans la démence.

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1994

References

REFERENCES

1. Kung, HK, Pan, S, Kung, M-P, et al. In vitro and in vivo evaluation of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. J Nucl Med 1989; 30: 8892.Google ScholarPubMed
2. Holman, BL, Gibson, RE, Hill, TC, et al. Muscarinic acetylcholine receptors in Alzheimer’s disease: in vivo imaging with iodine-123-labelled 3-quinuclidinyl-4-iodobenzilate and emission tomography. JAMA 1985; 254: 30633066.CrossRefGoogle Scholar
3. Sokoloff, L. Relationship among local functional activity, energy metabolism and blood flow in central nervous system. Fed Proc 1981; 40: 23112316.Google Scholar
4. Hellman, RS, Tikofsky, RS, Collier, BD, et al. Alzheimer disease: quantitative analysis of 1–123-iodoamphetamine SPECT brain imaging. Radiology 1989; 172: 183188.CrossRefGoogle ScholarPubMed
5. Gemmell, HG, Sharp, PF, Besson, JA, et al. Differential diagnosis in dementia using the cerebral blood flow agent 99mTc HM-PAO: a SPECT study. J Comput Assist Tomogr 1987; 11: 398402.CrossRefGoogle ScholarPubMed
6. Neary, D, Snowden, JS, Shields, RA, et al. Single photon emission tomography using 99mTc-HM-PAO in the investigation of dementia. J Neurol Neurosurg Psychiatry 1987; 50: 11011109.CrossRefGoogle ScholarPubMed
7. Sharp, P, Gemmell, H, Cherryman, G, et al. Application of iodine-123-labelled isopropylamphetamine imaging to the study of dementia. J Nucl Med 1986; 27: 761768.Google Scholar
8. Reed, BR, Jagust, W-J, Seab, P, et al. Memory and regional cerebral blood flow in mildly symptomatic Alzheimer’s disease. Neurology 1989; 39: 15371539.CrossRefGoogle ScholarPubMed
9. Jagust, W-J, Reed, BR, Seab, JP, et al. Clinical-physiologic correlates of Alzheimer’s disease and frontal lobe dementia. Am J Physiol Imaging 1989; 4: 8996.Google ScholarPubMed
10. Jagust, W-J, Budinger, TF, Reed, BR. The diagnosis of dementia with single photon emission computed tomography. Arch Neurol 1987; 44: 258262.Google Scholar
11. Friedland, RP, Jagust, WJ, Huesman, RH, et al. Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology 1989; 39: 14271434.CrossRefGoogle ScholarPubMed
12. DeKosky, ST, Shih, WJ, Schmitt, FA, et al. Assessing utility of single photon emission computed tomography (SPECT) scan in Alzheimer disease: correlation with cognitive severity. Alzheimer Dis Assoc Disord 1990; 4: 1423.CrossRefGoogle ScholarPubMed
13. Holman, BL. Perfusion and receptor SPECT in the dementias. George Taplin memorial lecture. J Nucl Med 1986; 27: 855860.Google ScholarPubMed
14. Podreka, I, Suess, E, Goldenberg, G, et al. Initial experience with technetium 99m HM-PAO brain SPECT. J Nucl Med 1987; 28: 16571666.Google ScholarPubMed
15. Chase, TN, Foster, NL, Fedio, P, et al. Regional cortical dysfunction in Alzheimer’s disease as determined by positron emission tomography. Ann Neurol 1984; 15 (Suppl): S170-S174.CrossRefGoogle ScholarPubMed
16. Kuhl, DE, Barrio, JR, Huang, SC. Quantifying local cerebral blood by n-isopropyl-p(1123) iodoamphetamine (IMP) tomography. J Nucl Med 1986; 23: 196203.Google Scholar
17. Knapp, WH, von Kummer, R, Kubler, W. Imaging of cerebral blood flow-to-volume distribution using SPECT. J Nucl Med 1986; 27: 465470.Google ScholarPubMed
18. Spreafico, G, Gadola, G, Cammelli, F, et al. Semiquantitative assessment of regional cerebral perfusion using 99mTc HM-PAO and emission tomography. Eur J Nucl Med 1988; 14: 565568.CrossRefGoogle ScholarPubMed
19. Kushner, M, Tobin, M, Alavi, A, et al. Cerebellar glucose consumption in normal and pathologic states using fluorine-FDG and PET. J Nucl Med 1987; 28: 16671670.Google ScholarPubMed
20. Burns, A, Philpot, MP, Costa, DC, et al. The investigation of Alzheimer’s disease with single photon emission tomography. J Neurol Neurosurg Psychiatry 1989; 52: 248253.CrossRefGoogle ScholarPubMed
21. Perani, D, Di Piero, V, Vallar, G, et al. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer’s disease. J Nucl Med 1988; 29: 15071514.Google ScholarPubMed
22. Montaldi, D, Brooks, DN, McColl, JH, et al. Measurements of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 3338.CrossRefGoogle ScholarPubMed
23. Cummings, JL, Benson, DF. Dementia: A Clinical Approach. Boston, Butterworths, 1983: 1.Google Scholar
24. McKhann, G, Drachman, D, Folstein, M, et al. Clinical diagnosis of Alzheimer’s disease: Report of NINCOS-ADRDA Work Group under auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984; 34: 939944.CrossRefGoogle ScholarPubMed
25. Rosen, WG, Terry, RD, Fuld, PA, Katzman, R, Peck, A. Pathological verification of Ischemic Score in differentiation of dementias. Ann Neurol 1980; 7: 486488.CrossRefGoogle ScholarPubMed
26. Chang, L-T. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; NS-25: 638643.CrossRefGoogle Scholar
27. Johnson, KA, Mueller, ST, Walshe, TM, English, RJ, Holman, BL. Cerebral perfusion imaging in Alzheimer’s disease. Use of single photon emission computed tomography and iofetamine hydrochloride I 123. Arch Neurol 1987; 44: 165168.CrossRefGoogle ScholarPubMed
28. Cohen, MB, Lake, RR, Graham, LS, et al. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia. J Nucl Med 1989; 30: 16161620.Google Scholar
29. Kretschmann, HJ, Weinrich, W. Neuroanatomy and Cranial Computed Tomography. New York: Thieme Inc., 1986: 1845.Google Scholar
30. Haxby, JV, Duara, R, Grady, CL, et al. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 1985; 5: 193200.CrossRefGoogle ScholarPubMed
31. Foster, NL, Chase, TN, Fedio, P, et al. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 1983; 33: 961965.CrossRefGoogle ScholarPubMed
32. Brun, A, Englund, E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549564.CrossRefGoogle ScholarPubMed
33. Ackerman, RH, Alpert, NM, et al. Correlation of positron emission scans with CT scans and clinical course. Acta Neurol Scand 1979; 60: 230231.Google Scholar
34. Maurer, AH. Nuclear medicine: SPECT comparisons to PET. Radiol Clin North Am 1988; 26: 10591074.CrossRefGoogle Scholar
35. Pappata, S, Tran, Dinh S, Baron, JC, et al. Remote metabolic effects of cerebrovascular lesions: magnetic resonance and positron tomography imaging. Neuroradiology 1987; 29: 16.CrossRefGoogle ScholarPubMed
36. Kamo, H, McGeer, R, Harrop, R, et al. Positron emission tomography and histopathology in Pick’s disease. Neurology 1987; 37: 439445.CrossRefGoogle ScholarPubMed
37. McGeachie, RE, Fleming, JO, Sharer, LR, et al. Case report: diagnosis of Pick’s disease by computed tomography. J Comput Assist Tomogr 1979; 3: 113115.CrossRefGoogle ScholarPubMed
38. Wechsler, AF, Verity, MA, Rosenchein, S, et al. Pick’s disease: a clinical, computed tomographic, and histological study with Golgi impregnation observations. Arch Neurol 1982; 39: 287290.CrossRefGoogle Scholar
39. Tobo, M, Fujii, I, Hoaki, T. Computed tomography in Pick–s disease. Folia Psychiatr Neurol Jpn 1984; 38: 137141.Google ScholarPubMed
40. Goodglass, H, Kaplan, E. The Assessment of Aphasia and Related Disorders. Philadelphia: Lea & Febiger, 1983: 2956.Google Scholar
41. Derouesne, C, Rancurel, G, Le Poncin, Lafitte M, et al. Variability of cerebral blood flow defects in Alzheimer’s disease on 123 iodo isopropyl-amphetamine and single photon emission tomography. Lancet 1985; 1: 1282.CrossRefGoogle Scholar
42. Hachinski, VC, Iliff, LD, Zilkh, E, et al. Cerebral blood flow in dementia. Arch Neurol 1975; 32: 632637.CrossRefGoogle ScholarPubMed
43. Kuhl, DE, Metter, EJ, Tieger, WH, et al. Effects of human aging on patterns of local cerebral glucose utilization determined by the [l8F]fluorodeoxyglucose method (abst). J Cereb Blood Flow Metab 1987; 7 (Suppl 1): S411.Google Scholar
44. Chawluk, JB, Alavi, A, Jamieson, DG, et al. Changes in local cerebral glucose metabolism with normal aging, the effects of cardiovascular and systemic health factors [abst]. J Cereb Blood Flow Metab 1987; 7 (Suppl): S411.Google Scholar
45. de Leon, MJ, George, AE, Tomanelli, J, et al. Positron emission tomography studies of normal aging, a replication of PET III and 18-FDG using PET VI and 11-CDG. Neurobiol Aging 1987; 8: 319323.CrossRefGoogle ScholarPubMed
46. Chawluk, JB, Alavi, A, Hurtig, H, et al. Altered patterns of regional cerebral glucose metabolism in aging and dementia. J Cereb Blood Flow Metab 1985; 5: S121-S122.Google Scholar
47. Yoshii, F, Barker, WW, Chang, JY, et al. Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J Cereb Blood Flow Metab 1988; 8: 654661.CrossRefGoogle ScholarPubMed
48. Alavi, A, Dann, R, Chawluk, J, et al. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 1986; 16: 234.CrossRefGoogle ScholarPubMed
49. Mesulam, MM. Slowly progressive aphasia without generalized dementia. Ann Neurol 1982; 11: 592598.CrossRefGoogle ScholarPubMed
50. Lee, A, Mena, IG, Miller, B. Cerebral hypoxic injury detected by Tc-HMPAO SPECT. Clin Nucl Med 1989; 14: 482483.CrossRefGoogle ScholarPubMed