Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T11:36:26.959Z Has data issue: false hasContentIssue false

Skeletal Muscle Metabolic Dysfunction in Obesity and Metabolic Syndrome

Published online by Cambridge University Press:  02 December 2014

Greg D. Wells
Affiliation:
Physiology and Experimental Medicine, Department of Anesthesia, The Hospital for Sick Children, Toronto General Hospital, University of Toronto, Toronto
Michael D. Noseworthy
Affiliation:
Departments of Electrical & Computer Engineering, Medical Physics, and Biomedical Engineering, Brain-Body Institute, McMaster University
Jill Hamilton
Affiliation:
Division of Endocrinology, The Hospital for Sick Children, Toronto General Hospital, University of Toronto, Toronto
Mark Tarnopolski
Affiliation:
Neuromuscular and Neurometabolic Clinic, McMaster University Medical Center, Hamilton, Ontario, Canada
Ingrid Tein
Affiliation:
The Department of Pediatrics, Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Toronto General Hospital, University of Toronto, Toronto
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Obesity and the related metabolic syndrome have become a worldwide epidemic. Inactivity appears to be a primary causative factor in the pathogenesis of this obesity and metabolic syndrome. There are two possible, perhaps not mutually exclusive, events that may lead to intramyocellular lipid accumulation and mitochondrial dysfunction in patients with obesity. First, obesity, with high intake-associated lipid accumulation in muscle may interfere with cellular mitochondrial function through generation of reactive oxygen species leading to lipid membrane peroxidative injury and disruption of mitochondrial membrane-dependent enzymes. This in turn leads to impaired oxidative metabolism. Secondly, a primary defect in mitochondrial oxidative metabolism may be responsible for a reduction in fatty acid oxidation leading to intramyocellular lipid accumulation as a secondary event. Non-invasive techniques such as proton (1H) and phosphorus (31P) magnetic resonance spectroscopy, coupled with specific magnetic resonance imaging techniques, may facilitate the investigation of the effects of various ergometric interventions on the pathophysiology of obesity and the metabolic syndrome. Exercise has positive effects on glucose metabolism, aerobic metabolism, mitochondrial density, and respiratory chain proteins in patients with metabolic syndrome, and we propose that this may be due to the exercise effects on AMP kinase, and a prospective physiological mechanism for this benefit is presented. A physiological model of the effect of intramyocellular lipid accumulation on oxidative metabolism and insulin mediated glucose uptake is proposed.

Résumé:

RÉSUMÉ:

L'obésité et le syndrome métabolique, deux entités qui sont reliées, sont devenus épidémiques à l'échelle mondiale. L'inactivité semble être le facteur causal primaire. Il existe deux possibilités, qui ne sont peut-être pas mutuellement exclusives, qui peuvent conduire à une accumulation intramyocellulaire de lipides et à une dysfonction mitochondriale chez les patients obèses. D'une part l'obésité, avec une accumulation musculaire de lipides suite à une consommation élevée de lipides, peut interférer avec la fonction mitochondriale à cause de la production de radicaux libres qui provoquent la peroxydation des lipides membranaires et la perturbation des enzymes mitochondriales dépendantes de la membrane entravant ainsi le métabolisme oxydatif. D'autre part, un défaut primaire dans le métabolisme oxydatif mitochondrial pourrait être responsable d'une diminution de l'oxydation des acides gras, ce qui entraîrait secondairement une accumulation lipidique intramyocellulaire. Des techniques non-effractives comme la spectroscopie RMN du proton (1H) et du phosphore (31P), couplées à des techniques spécifiques d'imagerie par résonance magnétique pourraient faciliter l'étude des effets de différentes interventions ergométriques sur la physiopathologie de l'obésité et du syndrome métabolique. L'exercice a des effets positifs sur le métabolisme du glucose, le métabolisme aérobique, la densité mitochondriale et les protéines de la chaî respiratoire chez les patients atteints du syndrome métabolique, ce qui porte à croire que l'exercice influence la kinase activée par l'AMP et nous proposons un mécanisme physiologique pour l'expliquer. Nous présentons également un modèle physiologique de l'effet de l'accumulation lipidique intramyocellulaire sur le métabolisme oxydatif et sur la captation du glucose médiée par l'insuline.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. Vanasse, A, Demers, M, Hemiari, A, Courteau, J. Obesity in Canada: where and how many? Int J Obes. 2005; 30(4):67783.Google Scholar
2. Dietitians of Canada, Canadian Paediatric Society, College of Family Physicians of Canada, Community Health Nurses Association of Canada. The use of growth charts for assessing and monitoring growth in Canadian infants and children. Can J Diet Pract Res. 2004; 65(1):2232.Google Scholar
3. Tremblay, MS, Willms, JD. Secular trends in the body mass index of Canadian children. CMAJ. 2000; 163(11):142913.Google ScholarPubMed
4. Sheilds, M. Overweight and obesity among children and youth. Health Rep. 2006 Aug; 17(3):2742.Google Scholar
5. Caprio, S, Genel, M. Confronting the epidemic of childhood obesity. Pediatrics. 2005; 115(2):4945.Google Scholar
6. Kaur, H, Hyder, ML, Poston, WS. Childhood overweight: An expanding problem. Treat Endocrinol. 2003; 2(6):37588.CrossRefGoogle ScholarPubMed
7. Strock, GA, Cottrell, ER, Abang, AE, Buschbacher, RM, Hannon, TS. Childhood obesity: A simple equation with complex variables. J Long Term Eff Med Implants 2005; 15(1):1532.Google Scholar
8. Clement, K, Ferre, P. Genetics and the pathophysiology of obesity. Pediatr Res. 2003; 53(5):7215.CrossRefGoogle ScholarPubMed
9. Weiss, R, Dziura, J, Burgert, TS, Tamborlane, WV, Taksali, SE, Yeckel, CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004; 350(23):236274.Google Scholar
10. Sinha, R, Fisch, G, Teague, B, Tamborlane, WV, Banyas, B, Allen, K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002; 346(11):80210.Google Scholar
11. Speiser, PW, Rudolf, MC, Anhalt, H, Camacho-Hubner, C, Chiarelli, F, Eliakim, A, et al. Childhood obesity. J Clin Endocrinol Metab. 2005; 90(3):18787.Google Scholar
12. Bjorntorp, P. Abdominal obesity and the metabolic syndrome. Ann Med. 1992; 24(6):4658.CrossRefGoogle ScholarPubMed
13. Weiss, R, Dufour, S, Taksali, SE, Tamborlane, WV, Petersen, KF, Bonadonna, RC, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet. 2003; 362(9388):9517.Google Scholar
14. Bonen, A, Dohm, GL, van Loon, LJ. Lipid metabolism, exercise and insulin action. Essays Biochem. 2006; 42: 4759.Google Scholar
15. Kelley, DE, Goodpaster, B, Wing, RR, Simoneau, JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999; 277(6 Pt 1):E113041.Google ScholarPubMed
16. Pan, DA, Lillioja, S, Kriketos, AD, Milner, MR, Baur, LA, Bogardus, C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997; 46(6):9838.Google Scholar
17. Malenfant, P, Joanisse, DR, Theriault, R, Goodpaster, BH, Kelley, DE, Simoneau, JA. Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord. 2001; 25(9): 131621.CrossRefGoogle ScholarPubMed
18. McGarry, JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002; 51(1):718.Google Scholar
19. Simoneau, JA, Colberg, SR, Thaete, FL, Kelley, DE. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J. 1995; 9(2):2738.Google Scholar
20. Kim, JY, Hickner, RC, Cortright, RL, Dohm, GL, Houmard, JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab. 2000; 279(5):E103944.Google Scholar
21. Simoneau, JA, Veerkamp, JH, Turcotte, LP, Kelley, DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999; 13(14):205160.Google Scholar
22. Ravikumar, B, Carey, PE, Snaar, JE, Deelchand, DK, Cook, DB, Neely, RD, et al. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab. 2005; 288(4):E78997.Google Scholar
23. Goodpaster, BH, Kelley, DE. Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus?. Curr Diab Rep. 2002; 2(3):21622.Google Scholar
24. Shulman, GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000; 106(2):1716.Google Scholar
25. Bonadonna, RC, Del Prato, S, Bonora, E, Saccomani, MP, Gulli, G, Natali, A, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996; 45(7):91525.Google Scholar
26. Kelley, DE, Mintun, MA, Watkins, SC, Simoneau, JA, Jadali, F, Fredrickson, A, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996; 97(12):270513.Google Scholar
27. Saltiel, AR, Kahn, CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414(6865):799806.Google Scholar
28. Kelley, DE, He, J, Menshikova, EV, Ritov, VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002; 51(10):294450.Google Scholar
29. Brechtel, K, Dahl, DB, Machann, J, Bachmann, OP, Wenzel, I, Maier, T, et al. Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1H-MRS study. Magn Reson Med. 2001; 45(2):17983.Google Scholar
30. Boden, G, Chen, X, Rosner, J, Barton, M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995; 44(10):123942.Google Scholar
31. Roden, M, Price, TB, Perseghin, G, Petersen, KF, Rothman, DL, Cline, GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996; 97(12):285965.Google Scholar
32. Man, ZW, Hirashima, T, Mori, S, Kawano, K. Decrease in triglyceride accumulation in tissues by restricted diet and improvement of diabetes in otsuka long-evans tokushima fatty rats, a non-insulindependent diabetes model. Metabolism. 2000; 49(1):10814.Google Scholar
33. Ohneda, M, Inman, LR, Unger, RH. Caloric restriction in obese prediabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia. 1995; 38(2):1739.Google Scholar
34. Goodpaster, BH, Wolf, D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004; 5(4):21926.Google Scholar
35. Gavrilova, O, Marcus-Samuels, B, Graham, D, Kim, JK, Shulman, GI, Castle, AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000; 105(3):2718.Google Scholar
36. Kim, JK, Gavrilova, O, Chen, Y, Reitman, ML, Shulman, GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000a; 275(12):845660.Google Scholar
37. Hevener, AL, He, W, Barak, Y, Le, J, Bandyopadhyay, G, Olson, P, et al. Muscle-specific Pparg deletion causes insulin resistance. Nature Med. 2003; 9(12):14917.Google Scholar
38. Norris, AW, Chen, L, Fisher, SJ, Szanto, I, Ristow, M, Jozsi, AC, et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest. 2003; 112(4):60818.Google Scholar
39. Palming, J, Sjöholm, K, Jernås, M, Lystig, TC, Gummesson, A, Romeo, S, et al. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J Clin Endocrinol Metab. 2007; 92(6):234652.Google Scholar
40. Shimomura, I, Funahashi, T, Takahashi, M, Maeda, K, Kotani, K, Nakamura, T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Med. 1996; 2(7):8003.Google Scholar
41. Hotamisligil, GS, Shargill, NS, Spiegelman, BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 1993; 259(5091):8791.Google Scholar
42. Steppan, CM, Bailey, ST, Bhat, S, Brown, EJ, Banerjee, R, Wright, CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409(6818):30712.CrossRefGoogle ScholarPubMed
43. Friedman, JM, Halaas, JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395(6704):76370.Google Scholar
44. Berg, AH, Combs, TP, Scherer, PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002; 13(2):849.Google Scholar
45. Yang, Q, Graham, TE, Mody, N, Preitner, F, Peroni, OD, Zabolotny, JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005; 436(7049):35662.Google Scholar
46. Kershaw, EE, Flier, JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004; 89(6):254856.Google Scholar
47. Yamauchi, T, Kamon, J, Waki, H, Terauchi, Y, Kubota, N, Hara, K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 2001; 7(8):9416.Google Scholar
48. Rudich, A, Tirosh, A, Potashnik, R, Hemi, R, Kanety, H, Bashan, N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998; 47(10): 15629.Google Scholar
49. Maddux, BA, See, W, Lawrence, JC Jr, Goldfine, AL, Goldfine, ID, Evans, JL. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of alpha-lipoic acid. Diabetes. 2001; 50(2):40410.Google Scholar
50. Matsuoka, T, Kajimoto, Y, Watada, H, Kaneto, H, Kishimoto, M, Umayahara, Y, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest. 1997; 99(1), 14450.Google Scholar
51. Furukawa, S, Fujita, T, Shimabukuro, M, Iwaki, M, Yamada, Y, Nakajima, Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114(12):175261.Google Scholar
52. Kaasik, A, Veksler, V, Boehm, E, Novotova, M, Minajeva, A, Ventura-Clapier, R. Energetic crosstalk between organelles: Architectural integration of energy production and utilization. Circ Res. 2001; 89(2):1539.CrossRefGoogle Scholar
53. Hood, DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001; 90(3):113757.Google Scholar
54. Saltiel, AR. Series introduction: The molecular and physiological basis of insulin resistance: emerging implications for metabolic and cardiovascular diseases. J Clin Invest. 2000; 106(2):1634.Google Scholar
55. Shepherd, PR, Kahn, BB. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999; 341(4):24857.Google Scholar
56. Colberg, SR, Simoneau, JA, Thaete, FL, Kelley, DE. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest. 1995; 95(4):184653.Google Scholar
57. Sun, G, Ukkola, O, Rankinen, T, Joanisse, DR, Bouchard, C. Skeletal muscle characteristics predict body fat gain in response to overfeeding in never-obese young men. Metabolism. 2002; 51(4):4516.Google Scholar
58. Ritov, VB, Menshikova, EV, He, J, Ferrell, RE, Goodpaster, BH, Kelley, DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005; 54(1):814.Google Scholar
59. Petersen, KF, Befroy, D, Dufour, S, Dziura, J, Ariyan, C, Rothman, DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003; 300(5622):11402.Google Scholar
60. Stump, CS, Short, KR, Bigelow, ML, Schimke, JM, Nair, KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA. 2003; 100(13):79968001.Google Scholar
61. Tein, I. Metabolic myopathies. In: Swaiman, KF, Ashwal, S, Ferriero, D, editors. Pediatric Neurology. 4th ed. Mosby-Yearbook Inc; 2006 p. 202373.Google Scholar
62. Mootha, VK, Lindgren, CM, Eriksson, KF, Subramanian, A, Sihag, S, Lehar, J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3):26773.Google Scholar
63. Patti, ME, Butte, AJ, Crunkhorn, S, Cusi, K, Berria, R, Kashyap, S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003; 100(14): 846671.Google Scholar
64. Petersen, KF, Dufour, S, Befroy, D, Garcia, R, Shulman, GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004; 350(7): 66471.Google Scholar
65. Vignais, PV. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta. 1976; 456(1):138.Google Scholar
66. Lemasters, JJ, Sowers, AE. Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J Biol Chem. 1979; 254(4):124851.Google Scholar
67. Shug, A, Lerner, E, Elson, C, Shrago, E. The inhibition of adenine nucleotide translocase activity by oleoyl CoA and its reversal in rat liver mitochondria. Biochem Biophys Res Commun. 1971; 43(3):55763.Google Scholar
68. Pande, SV, Blanchaer, MC. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 1971; 246(2):40211.CrossRefGoogle ScholarPubMed
69. Kaukonen, J, Juselius, JK, Tiranti, V, Kyttala, A, Zeviani, M, Comi, GP, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000; 289(5480):7825.Google Scholar
70. Esposito, LA, Melov, S, Panov, A, Cottrell, BA, Wallace, DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA. 1999; 96(9):48205.Google Scholar
71. Marzo, I, Brenner, C, Kroemer, G. The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother. 1998; 52(6):24851.Google Scholar
72. Palmieri, L, Alberio, S, Pisano, I, Lodi, T, Meznaric-Petrusa, M, Zidar, J, et al. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet. 2005; 14(20):307988.Google Scholar
73. McKenzie, M, Liolitsa, D, Hanna, MG. Mitochondrial disease: mutations and mechanisms. Neurochem Res. 2004; 29(3): 589600.Google Scholar
74. Doudican, NA, Song, B, Shadel, GS, Doetsch, PW. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol. 2005; 25(12): 5196204.Google Scholar
75. Pitkanen, S, Robinson, BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest. 1996; 98(2):34551.Google Scholar
76. Boveris, A, Oshino, N, Chance, B. The cellular production of hydrogen peroxide. Biochem J. 1972; 128(3):61730.Google Scholar
77. Cheeseman, KH, Slater, TF. An introduction to free radical biochemistry. Br Med Bull. 1993; 49(3):48193.Google Scholar
78. Mak, IT, Kramer, JH, Weglicki, WB. Potentiation of free radicalinduced lipid peroxidative injury to sarcolemmal membranes by lipid amphiphiles. J Biol Chem. 1986; 261(3):11537.CrossRefGoogle ScholarPubMed
79. Howald, H, Boesch, C, Kreis, R, Matter, S, Billeter, R, Essen-Gustavsson, B, et al. Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and (1)H-MR spectroscopy. J Appl Physiol. 2002; 92(6):226472.Google Scholar
80. Tarnopolsky, MA, Rennie, CD, Robertshaw, HA, Fedak-Tarnopolsky, SN, Devries, MC, Hamadeh, MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007; 292(3):R12718.Google Scholar
81. Jacob, S, Machann, J, Rett, K, Brechtel, K, Volk, A, Renn, W, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999; 48(5):11139.Google Scholar
82. Sinha, R, Dufour, S, Petersen, KF, LeBon, V, Enoksson, S, et al. Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents. Diabetes. 2002; 51: 10227.Google Scholar
83. Decombaz, J, Schmitt, B, Ith, M, Decarli, B, Diem, P, Kreis, R, et al. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2001; 281(3):R7609.Google Scholar
84. Boesch, C, Machann, J, Vermathen, P, Schick, F. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed. 2006; 19: 96888.Google Scholar
85. Weis, J, Johansson, L, Courivaud, F, Karlsson, FA, Ahlstrom, H. Quantification of intramyocellular lipids in obese subjects using spectroscopic imaging with high spatial resolution. MAGMA. 2007; 57: 228.Google Scholar
86. Prompers, JJ, Jeneson, JA, Drost, MR, Oomens, CC, Strijkers, GJ, Nicolay, K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed. 2006; 19(7):92753.Google Scholar
87. Bianchi, C, Penno, G, Romero, F, Del Prato, S, Miccoli, R. Treating the metabolic syndrome. Expert Rev Cardiovasc Ther. 2007; 5(3):491506.Google Scholar
88. Ildiko, V, Zsofia, M, Janos, M, Andreas, P, Dora, NE, Andras, P, et al. Activity-related changes of body fat and motor performance in obese seven-year-old boys. J Physiol Anthropol. 2007; 26(3): 3337.Google Scholar
89. Meyer, AA, Kundt, G, Lenschow, U, Schuff-Werner, P, Kienast, W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol. 2006; 48(9):186570.Google Scholar
90. Dishman, RK, Berthoud, HR, Booth, FW, Cotman, CW, Edgerton, VR, Fleshner, MR, et al. Neurobiology of exercise. Obesity (Silver Spring). 2006; 14(3):34556.CrossRefGoogle ScholarPubMed
91. Hardie, DG. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc. 2004; 36(1):2834.Google Scholar
92. Ruderman, NB, Keller, C, Richard, AM, Saha, AK, Luo, Z, Xiang, X, et al. Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes. 2006; 55 S2:S4854.Google Scholar
93. Fujii, N, Hayashi, T, Hirshman, MF, Smith, JT, Habinowski, SA, Kaijser, L, et al. Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000; 273(3):11505.Google Scholar
94. Chen, ZP, McConell, GK, Michell, BJ, Snow, RJ, Canny, BJ, Kemp, BE. AMPK signaling in contracting human skeletal muscle: Acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000; 279(5):E12026.CrossRefGoogle ScholarPubMed
95. Hayashi, T, Hirshman, MF, Kurth, EJ, Winder, WW, Goodyear, LJ. Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998; 47(8):136973.Google Scholar
96. Bergeron, R, Russell, RR3rd, Young, LH, Ren, JM, Marcucci, M, Lee, A, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999; 276(5 Pt 1):E93844.Google Scholar
97. Musi, N, Fujii, N, Hirshman, MF, Ekberg, I, Froberg, S, Ljungqvist, O, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001; 50(5):9217.Google Scholar
98. Schenk, S, Horowitz, JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007; 117(6):16908.Google Scholar
99. Hutber, CA, Hardie, DG, Winder, WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 1997; 272(2 Pt 1): E2626.Google Scholar
100. Vavvas, D, Apazidis, A, Saha, AK, Gamble, J, Patel, A, Kemp, BE, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997; 272(20):1325561.Google Scholar
101. Bergeron, R, Ren, JM, Cadman, KS, Moore, IK, Perret, P, Pypaert, M, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001; 281(6):E13406.CrossRefGoogle ScholarPubMed
102. Tarnopolsky, MA. Exercising women throw a wrench in the gears of the AMPK-lipid oxidation link. J Physiol. 2006 Jul 1;574 (Pt 1):1.Google Scholar