Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T15:04:39.112Z Has data issue: false hasContentIssue false

Simultaneous EEG-fMRI in Human Epilepsy

Published online by Cambridge University Press:  02 December 2014

Cameron JB Cunningham
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Alberta, Canada Department of Radiology, University of Calgary, Alberta, Canada The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada The Seaman Family MR Research Centre, Calgary, Alberta, Canada
Mohammed El-Fateh Zaamout
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Alberta, Canada Department of Radiology, University of Calgary, Alberta, Canada The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada The Seaman Family MR Research Centre, Calgary, Alberta, Canada
Bradley Goodyear
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Alberta, Canada Department of Radiology, University of Calgary, Alberta, Canada The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada The Seaman Family MR Research Centre, Calgary, Alberta, Canada
Paolo Federico*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Alberta, Canada Department of Radiology, University of Calgary, Alberta, Canada The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada The Seaman Family MR Research Centre, Calgary, Alberta, Canada
*
Department of Clinical Neurosciences, University of Calgary, Room C1214A, Foothills Medical Centre, 1403 29th Street NW, Calgary, Alberta, T2N 2T9, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electroencephalography (EEG) has been used to study and characterize epilepsy for decades, but has a limited ability to localize epileptiform activity to a specific brain region. With recent technological advances, high-quality EEG can now be recorded during functional magnetic resonance imaging (fMRI), which characterizes brain activity through local changes in blood oxygenation. By combining these techniques, the specific timing of interictal events can be identified on the EEG at millisecond resolution and spatially localized with fMRI at millimeter resolution. As a result, simultaneous EEG-fMRI provides the opportunity to better investigate the spatiotemporal mechanisms of the generation of epileptiform activity in the brain. This article discusses the technical considerations and their solutions for recording simultaneous EEG-fMRI and the results of studies to date. It also addresses the application of EEG-fMRI to epilepsy in humans, including clinical applications and ongoing challenges.

Résumé:

RÉSUMÉ:

L’électroencéphalographie (ÉEG) est utilisée depuis des décennies pour étudier et caractériser l’épilepsie. Cependant son utilité pour localiser l’activité épileptique à une région spécifique du cerveau est limitée. Grâce aux progrès technologiques récents, un ÉEG de haute qualité peut maintenant être enregistré pendant l’imagerie par résonance magnétique fonctionnelle (IRMf), ce qui permet de caractériser l’activité cérébrale au moyen de changements locaux dans l’oxygénation du sang. En combinant ces techniques, la chronologie des événements intercritiques peut être précisée avec l’ÉEG à une résolution de millisecondes et localisée dans l’espace avec l’IRMf à une résolution millimétrique. L’ÉEG–IRMf peut donc fournir une meilleure évaluation des mécanismes tempo–spatiaux de la genèse de l’activité épileptiforme dans le cerveau. Dans cet article, nous discutons des problèmes techniques rencontrés dans l’enregistrement simultané de l’ÉEG–IRMf et de leur solution, ainsi que des résultats des études publiées jusqu’à maintenant. Nous discutons également de l’utilisation de l’ÉEG–IMRf dans l’épilepsie chez l’humain et particulièrement des applications cliniques et des défis à relever.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. Schomer, DL, Bonmassar, G, Lazeyras, F, Seeck, M, Blum, A, Anami, K, et al. EEG-Linked functional magnetic resonance imaging in epilepsy and cognitive neurophysiology. J Clin Neurophysiol. 2000 Jan;17(1):4358.CrossRefGoogle ScholarPubMed
2. Blumenfeld, H. Functional MRI studies of animal models in epilepsy. Epilepsia. 2007;48 Suppl 4:1826.Google Scholar
3. Mirsattari, SM, Ives, JR, Leung, LS, Menon, RS. EEG monitoring during functional MRI in animal models. Epilepsia. 2007;48 Suppl 4:3746.CrossRefGoogle ScholarPubMed
4. Feychting, M. Health effects of static magnetic fields-a review of the epidemiological evidence. Prog Biophys Mol Biol. 2005 Feb-Apr;87(2-3):2416.CrossRefGoogle ScholarPubMed
5. Foerster, BU, Tomasi, D, Caparelli, EC. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med. 2005 Nov;54(5):12617.Google Scholar
6. Mirsattari, SM, Wang, Z, Ives, JR, Bihari, F, Leung, LS, Bartha, R, et al. Linear aspects of transformation from interictal epileptic discharges to BOLD fMRI signals in an animal model of occipital epilepsy. Neuroimage. 2006 May 1;30(4):113348.Google Scholar
7. Bagshaw, AP, Kobayashi, E, Dubeau, F, Pike, GB, Gotman, J. Correspondence between EEG-fMRI and EEG dipole localisation of interictal discharges in focal epilepsy. Neuroimage. 2006 Apr 1;30(2):41725.CrossRefGoogle ScholarPubMed
8. Lemieux, L, Salek-Haddadi, A, Josephs, O, Allen, P, Toms, N, Scott, C, et al. Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage. 2001 Sep;14(3):7807.Google Scholar
9. Nunez, PL, Silberstein, RB. On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr. 2000 Winter;13(2):7996.CrossRefGoogle ScholarPubMed
10. Tao, JX, Ray, A, Hawes-Ebersole, S, Ebersole, JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia. 2005 May;46(5):66976.Google Scholar
11. Ebersole, JS. Defining epileptogenic foci: past, present, future. J Clin Neurophysiol. 1997 Nov;14(6):47083.Google Scholar
12. Ebersole, JS, Pacia, SV. Localization of temporal lobe foci by ictal EEG patterns. Epilepsia. 1996 Apr;37(4):38699.Google Scholar
13. Luders, HO, Engel, J Jr, Munari, C. Surgical treatment of the epilepsies. New York: Raven Press Ltd; 1993.Google Scholar
14. Lu, Y, Grova, C, Kobayashi, E, Dubeau, F, Gotman, J. Using voxelspecific hemodynamic response function in EEG-fMRI data analysis: an estimation and detection model. Neuroimage. 2007 Jan 1;34(1):195203.Google Scholar
15. Zijlmans, M, Huiskamp, G, Hersevoort, M, Seppenwoolde, JH, van Huffelen, AC, Leijten, FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain. 2007 Sep;130(Pt 9):234353.Google Scholar
16. Gibbs, FA, Lennox, WG, Gibbs, EL. Cerebral blood flow preceding and accompanying epileptic seizures in man. Arch Neurol Psychiatry. 1934;(32):25772.CrossRefGoogle Scholar
17. Collins, RC, Caston, TV. Functional anatomy of occipital lobe seizures: an experimental study in rats. Neurology. 1979 May;29(5):70516.CrossRefGoogle ScholarPubMed
18. Collins, RC. Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C]deoxyglucose. Brain Res. 1978 Jul 21;150(3):487501.Google Scholar
19. Van Paesschen, W, Dupont, P, Sunaert, S, Goffin, K, Van Laere, K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol. 2007 Apr;20(2):194202.Google Scholar
20. Rowe, CC, Berkovic, SF, Austin, MC, Saling, M, Kalnins, RM, McKay, WJ, et al. Visual and quantitative analysis of interictal SPECT with technetium-99m-HMPAO in temporal lobe epilepsy. J Nucl Med. 1991 Sep;32(9):168894.Google Scholar
21. Spencer, SS. The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia. 1994;35 Suppl 6:S7289.Google Scholar
22. Devous, MD Sr., Thisted, RA, Morgan, GF, Leroy, RF, Rowe, CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med. 1998 Feb;39(2):28593.Google Scholar
23. Jackson, GD, Connelly, A, Cross, JH, Gordon, I, Gadian, DG. Functional magnetic resonance imaging of focal seizures. Neurology. 1994 May;44(5):8506.Google Scholar
24. Warach, S, Ives, JR, Schlaug, G, Patel, MR, Darby, DG, Thangaraj, V, et al. EEG-triggered echo-planar functional MRI in epilepsy. Neurology. 1996 Jul;47(1):8993.CrossRefGoogle ScholarPubMed
25. Seeck, M, Lazeyras, F, Michel, CM, Blanke, O, Gericke, CA, Ives, J, et al. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol. 1998 Jun;106(6):50812.CrossRefGoogle ScholarPubMed
26. Krakow, K, Woermann, FG, Symms, MR, Allen, PJ, Lemieux, L, Barker, GJ, et al. EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain. 1999 Sep;122 (Pt 9):167988.Google Scholar
27. Ogawa, S, Tank, DW, Menon, R, Ellermann, JM, Kim, SG, Merkle, H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):59515.Google Scholar
28. Logothetis, NK, Pauls, J, Augath, M, Trinath, T, Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001 Jul 12;412(6843):1507.CrossRefGoogle ScholarPubMed
29. Logothetis, NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003 May 15;23(10):396371.CrossRefGoogle ScholarPubMed
30. Menon, RS. Imaging function in the working brain with fMRI. Curr Opin Neurobiol. 2001 Oct;11(5):6306.Google Scholar
31. Yacoub, E, Hu, X. Detection of the early decrease in fMRI signal in the motor area. Magn Reson Med. 2001 Feb;45(2):18490.Google Scholar
32. Yacoub, E, Le, TH, Ugurbil, K, Hu, X. Further evaluation of the initial negative response in functional magnetic resonance imaging. Magn Reson Med. 1999 Mar;41(3):43641.Google Scholar
33. Malonek, D, Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996 Apr 26;272(5261):5514.Google Scholar
34. Yacoub, E, Ugurbil, K, Harel, N. The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD-and CBV-weighted fMRI. J Cereb Blood Flow Metab. 2006 May;26(5):63444.CrossRefGoogle ScholarPubMed
35. Kaufmann, C, Wehrle, R, Wetter, TC, Holsboer, F, Auer, DP, Pollmacher, T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006 Mar;129(Pt 3):655-67.Google Scholar
36. Krakow, K, Lemieux, L, Messina, D, Scott, CA, Symms, MR, Duncan, JS, et al. Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord. 2001 Jun;3(2):6774.Google Scholar
37. Lazeyras, F, Blanke, O, Perrig, S, Zimine, I, Golay, X, Delavelle, J, et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging. 2000 Jul;12(1):17785.Google Scholar
38. Sienkiewicz, Z. Rapporteur report: implications for exposure guidelines. Prog Biophys Mol Biol. 2005 Feb-Apr;87(2-3):36572.Google Scholar
39. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys. 2004 Aug;87(2):197216.CrossRefGoogle Scholar
40. Silva, AK, Silva, EL, Egito, ES, Carrico, AS. Safety concerns related to magnetic field exposure. Radiat Environ Biophys. 2006 Nov;45(4):24552.Google Scholar
41. Lemieux, L, Allen, PJ, Franconi, F, Symms, MR, Fish, DR. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med. 1997 Dec;38(6):94352.Google Scholar
42. Yeung, CJ, Susil, RC, Atalar, E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med. 2002 Jan;47(1):18793.Google Scholar
43. Angelone, LM, Potthast, A, Segonne, F, Iwaki, S, Belliveau, JW, Bonmassar, G. Metallic electrodes and leads in simultaneous EEG-MRI: specific absorption rate (SAR) simulation studies. Bioelectromagnetics. 2004 May;25(4):28595.Google Scholar
44. Vasios, CE, Angelone, LM, Purdon, PL, Ahveninen, J, Belliveau, JW, Bonmassar, G. EEG/(f)MRI measurements at 7 Tesla using a new EEG cap (“InkCap”). Neuroimage. 2006 Dec;33(4):108292.CrossRefGoogle ScholarPubMed
45. Hoffmann, A, Jager, L, Werhahn, KJ, Jaschke, M, Noachtar, S, Reiser, M. Electroencephalography during functional echo-planar imaging: detection of epileptic spikes using post-processing methods. Magn Reson Med. 2000 Nov;44(5):7918.Google Scholar
46. Goldman, RI, Stern, JM, Engel, J Jr., Cohen, MS. Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol. 2000 Nov;111(11):197480.Google Scholar
47. Mirsattari, SM, Ives, JR, Bihari, F, Leung, LS, Menon, RS, Bartha, R. Real-time display of artifact-free electroencephalography during functional magnetic resonance imaging and magnetic resonance spectroscopy in an animal model of epilepsy. Magn Reson Med. 2005 Feb;53(2):45664.Google Scholar
48. Salek-Haddadi, A, Diehl, B, Hamandi, K, Merschhemke, M, Liston, A, Friston, K, et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res. 2006 May 9;1088(1):14866.Google Scholar
49. Allen, PJ, Polizzi, G, Krakow, K, Fish, DR, Lemieux, L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage. 1998 Oct;8(3):22939.Google Scholar
50. Lagerlund, TD, Sharbrough, FW, Busacker, NE. Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J Clin Neurophysiol. 1997 Jan;14(1):7382.CrossRefGoogle ScholarPubMed
51. Srivastava, G, Crottaz-Herbette, S, Lau, KM, Glover, GH, Menon, V. ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. Neuroimage. 2005 Jan 1;24(1):5060.Google Scholar
52. Mantini, D, Perrucci, MG, Cugini, S, Ferretti, A, Romani, GL, Del Gratta, C. Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage. 2007 Jan 15;34(2):598607.CrossRefGoogle ScholarPubMed
53. Nakamura, W, Anami, K, Mori, T, Saitoh, O, Cichocki, A, Amari, S. Removal of ballistocardiogram artifacts from simultaneously recorded EEG and fMRI data using independent component analysis. IEEE Trans Biomed Eng. 2006 Jul;53(7):1294308.Google Scholar
54. Masterton, RA, Abbott, DF, Fleming, SW, Jackson, GD. Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. Neuroimage. 2007 Aug 1;37(1):20211.Google Scholar
55. Mandelkow, H, Halder, P, Boesiger, P, Brandeis, D. Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth. Neuroimage. 2006 Sep;32(3):11206.Google Scholar
56. Kobayashi, E, Bagshaw, AP, Grova, C, Dubeau, F, Gotman, J. Negative BOLD responses to epileptic spikes. Hum Brain Mapp. 2006 Jun;27(6):48897.Google Scholar
57. Friston, KJ, Williams, S, Howard, R, Frackowiak, RS, Turner, R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996 Mar;35(3):34655.Google Scholar
58. Salek-Haddadi, A, Lemieux, L, Merschhemke, M, Diehl, B, Allen, PJ, Fish, DR. EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn Reson Imaging. 2003 Dec;21(10):115966.Google Scholar
59. Lemieux, L, Salek-Haddadi, A, Lund, TE, Laufs, H, Carmichael, D. Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging. 2007 July;25(6):894901.Google Scholar
60. Smith, AM, Lewis, BK, Ruttimann, UE, Ye, FQ, Sinnwell, TM, Yang, Y, et al. Investigation of low frequency drift in fMRI signal. Neuroimage. 1999 May;9(5):52633.Google Scholar
61. Benar, CG, Gross, DW, Wang, Y, Petre, V, Pike, B, Dubeau, F, et al. The BOLD response to interictal epileptiform discharges. Neuroimage. 2002 Nov;17(3):118292.Google Scholar
62. Huang, CC, Liou, M, Cheng, PE., editor. Baseline correction of functional MR time courses with PCA. Proceedings of the 9th International Conference on Neural Information Processing; 2002 18-22 Nov. 2002.Google Scholar
63. Archer, JS, Briellman, RS, Abbott, DF, Syngeniotis, A, Wellard, RM, Jackson, GD. Benign epilepsy with centro-temporal spikes: spike triggered fMRI shows somato-sensory cortex activity. Epilepsia. 2003 Feb;44(2):2004.Google Scholar
64. Archer, JS, Briellmann, RS, Syngeniotis, A, Abbott, DF, Jackson, GD. Spike-triggered fMRI in reading epilepsy: involvement of left frontal cortex working memory area. Neurology. 2003 Feb 11;60(3):41521.Google Scholar
65. Jager, L, Werhahn, KJ, Hoffmann, A, Berthold, S, Scholz, V, Weber, J, et al. Focal epileptiform activity in the brain: detection with spike-related functional MR imaging-preliminary results. Radiology. 2002 Jun;223(3):8609.Google Scholar
66. Opdam, HI, Federico, P, Jackson, GD, Buchanan, J, Abbott, DF, Fabinyi, GC, et al. A sheep model for the study of focal epilepsy with concurrent intracranial EEG and functional MRI. Epilepsia. 2002 Aug;43(8):77987.Google Scholar
67. Bagshaw, AP, Aghakhani, Y, Benar, CG, Kobayashi, E, Hawco, C, Dubeau, F, et al. EEG-fMRI of focal epileptic spikes: analysis with multiple haemodynamic functions and comparison with gadolinium-enhanced MR angiograms. Hum Brain Mapp. 2004 Jul;22(3):17992.Google Scholar
68. Aghakhani, Y, Kobayashi, E, Bagshaw, AP, Hawco, C, Benar, CG, Dubeau, F, et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol. 2006 Jan;117(1):17791.Google Scholar
69. Federico, P, Archer, JS, Abbott, DF, Jackson, GD. Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology. 2005 Apr 12;64(7):112530.Google Scholar
70. Archer, JS, Abbott, DF, Waites, AB, Jackson, GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage. 2003 Dec;20(4):191522.Google Scholar
71. Gusnard, DA, Raichle, ME, Raichle, ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001 Oct;2(10):68594.Google Scholar
72. Shmuel, A, Yacoub, E, Pfeuffer, J, Van de Moortele, PF, Adriany, G, Hu, X, et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron. 2002 Dec 19;36(6):1195210.CrossRefGoogle Scholar
73. Stefanovic, B, Warnking, JM, Pike, GB. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage. 2004 Jun;22(2):7718.Google Scholar
74. Holmes, GL, Sarkisian, M, Ben-Ari, Y, Liu, Z, Chevassus-Au-Louis, N. Consequences of cortical dysplasia during development in rats. Epilepsia. 1999 May;40(5):53744.Google Scholar
75. Zilles, K, Qu, M, Schleicher, A, Luhmann, HJ. Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur J Neurosci. 1998 Oct;10(10):3095106.Google Scholar
76. Silva-Barrat, C, Menini, C, Bryere, P, Naquet, R. Multiunitary activity analysis of cortical and subcortical structures in paroxysmal discharges and grand mal seizures in photosensitive baboons. Electroencephalogr Clin Neurophysiol. 1986 Nov;64(5):45568.CrossRefGoogle ScholarPubMed
77. Morillo, LE, Ebner, TJ, Bloedel, JR. The early involvement of subcortical structures during the development of a cortical seizure focus. Epilepsia. 1982 Dec;23(6):57185.CrossRefGoogle ScholarPubMed
78. Kobayashi, E, Bagshaw, AP, Benar, CG, Aghakhani, Y, Andermann, F, Dubeau, F, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia. 2006 Feb;47(2):34354.Google Scholar
79. Aghakhani, Y, Bagshaw, AP, Benar, CG, Hawco, C, Andermann, F, Dubeau, F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004 May;127(Pt 5):112744.Google Scholar
80. Kang, JK, Benar, C, Al-Asmi, A, Khani, YA, Pike, GB, Dubeau, F, et al. Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy. Neuroimage. 2003 Oct;20(2):116270.Google Scholar
81. Lu, Y, Bagshaw, AP, Grova, C, Kobayashi, E, Dubeau, F, Gotman, J. Using voxel-specific hemodynamic response function in EEG-fMRI data analysis. Neuroimage. 2006 Aug 1;32(1):23847.Google Scholar
82. Hawco, CS, Bagshaw, AP, Lu, Y, Dubeau, F, Gotman, J. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage. 2007 May 1;35(4):14508.CrossRefGoogle ScholarPubMed
83. Makiranta, M, Ruohonen, J, Suominen, K, Niinimaki, J, Sonkajarvi, E, Kiviniemi, V, et al. BOLD signal increase preceeds EEG spike activity-a dynamic penicillin induced focal epilepsy in deep anesthesia. Neuroimage. 2005 Oct 1;27(4):71524.Google Scholar
84. Salek-Haddadi, A, Merschhemke, M, Lemieux, L, Fish, DR. Simultaneous EEG-Correlated Ictal fMRI. Neuroimage. 2002 May;16(1):3240.Google Scholar
85. Hamandi, K, Salek-Haddadi, A, Fish, DR, Lemieux, L. EEG/functional MRI in epilepsy: The queen square experience. J Clin Neurophysiol. 2004 Jul-Aug;21(4):2418.Google Scholar
86. Gotman, J, Kobayashi, E, Bagshaw, AP, Benar, CG, Dubeau, F. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging. 2006 Jun;23(6):90620.CrossRefGoogle ScholarPubMed
87. Boor, S, Vucurevic, G, Pfleiderer, C, Stoeter, P, Kutschke, G, Boor, R. EEG-related functional MRI in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 2003 May;44(5):68892.Google Scholar
88. Leal, A, Dias, A, Vieira, JP, Secca, M, Jordao, C. The BOLD effect of interictal spike activity in childhood occipital lobe epilepsy. Epilepsia. 2006 Sep;47(9):153642.CrossRefGoogle ScholarPubMed
89. De Tiege, X, Laufs, H, Boyd, SG, Harkness, W, Allen, PJ, Clark, CA, et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia. 2007 Feb;48(2):3859.Google Scholar
90. Hill, RA, Chiappa, KH, Huang-Hellinger, F, Jenkins, BG. Hemodynamic and metabolic aspects of photosensitive epilepsy revealed by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia. 1999 Jul;40(7):91220.Google Scholar
91. Salek-Haddadi, A, Lemieux, L, Merschhemke, M, Friston, KJ, Duncan, JS, Fish, DR. Functional magnetic resonance imaging of human absence seizures. Ann Neurol. 2003 May;53(5):6637.Google Scholar
92. Gotman, J, Grova, C, Bagshaw, A, Kobayashi, E, Aghakhani, Y, Dubeau, F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA. 2005 Oct 18;102(42):1523640.Google Scholar
93. Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):67682.Google Scholar
94. Hamandi, K, Laufs, H, Noth, U, Carmichael, DW, Duncan, JS, Lemieux, L. BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage. 2008 Jan 15;39(2):60818.Google Scholar
95. Laufs, H, Hamandi, K, Salek-Haddadi, A, Kleinschmidt, AK, Duncan, JS, Lemieux, L. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp. 2007 Oct;28(10):102332.CrossRefGoogle ScholarPubMed
96. Tenney, JR, Marshall, PC, King, JA, Ferris, CF. fMRI of generalized absence status epilepticus in conscious marmoset monkeys reveals corticothalamic activation. Epilepsia. 2004 Oct;45(10):12407.Google Scholar
97. Tenney, JR, Duong, TQ, King, JA, Ludwig, R, Ferris, CF. Corticothalamic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia. 2003 Sep;44(9):113340.Google Scholar
98. Van Camp, N, D’Hooge, R, Verhoye, M, Peeters, RR, De Deyn, PP, Van der Linden, A. Simultaneous electroencephalographic recording and functional magnetic resonance imaging during pentylenetetrazol-induced seizures in rat. Neuroimage. 2003 Jul;19(3):62736.Google Scholar
99. Brevard, ME, Kulkarni, P, King, JA, Ferris, CF. Imaging the neural substrates involved in the genesis of pentylenetetrazol-induced seizures. Epilepsia. 2006 Apr;47(4):74554.Google Scholar
100. Tenney, JR, Duong, TQ, King, JA, Ferris, CF. FMRI of brain activation in a genetic rat model of absence seizures. Epilepsia. 2004 Jun;45(6):57682.Google Scholar
101. Nersesyan, H, Hyder, F, Rothman, DL, Blumenfeld, H. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab. 2004 Jun;24(6):58999.Google Scholar
102. Delamont, RS, Julu, PO, Jamal, GA. Changes in a measure of cardiac vagal activity before and after epileptic seizures. Epilepsy Res. 1999 Jun;35(2):8794.Google Scholar
103. Boylan, LS. Peri-ictal behavioral and cognitive changes. Epilepsy Behav. 2002 Feb;3(1):1626.Google Scholar
104. Litt, B, Esteller, R, Echauz, J, D’Alessandro, M, Shor, R, Henry, T, et al. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron. 2001 Apr;30(1):5164.Google Scholar
105. Weinand, ME, Carter, LP, el-Saadany, WF, Sioutos, PJ, Labiner, DM, Oommen, KJ. Cerebral blood flow and temporal lobe epileptogenicity. J Neurosurg. 1997 Feb;86(2):22632.Google Scholar
106. Baumgartner, C, Serles, W, Leutmezer, F, Pataraia, E, Aull, S, Czech, T, et al. Preictal SPECT in temporal lobe epilepsy: regional cerebral blood flow is increased prior to electro-encephalography-seizure onset. J Nucl Med. 1998 Jun;39(6):97882.Google Scholar
107. Krings, T, Topper, R, Reinges, MH, Foltys, H, Spetzger, U, Chiappa, KH, et al. Hemodynamic changes in simple partial epilepsy: a functional MRI study. Neurology. 2000 Jan 25;54(2):5247.Google Scholar
108. Federico, P, Abbott, DF, Briellmann, RS, Harvey, AS, Jackson, GD. Functional MRI of the pre-ictal state. Brain. 2005 Aug;128(Pt 8):18117.Google Scholar
109. Keogh, BP, Cordes, D, Stanberry, L, Figler, BD, Robbins, CA, Tempel, BL, et al. BOLD-fMRI of PTZ-induced seizures in rats. Epilepsy Res. 2005 Aug-Sep;66(1-3):7590.Google Scholar
110. Di Bonaventura, C, Carnfi, M, Vaudano, AE, Pantano, P, Garreffa, G, Le Piane, E, et al. Ictal hemodynamic changes in late-onset rasmussen encephalitis. Ann Neurol. 2006 Feb;59(2):4323.Google Scholar
111. Kobayashi, E, Hawco, CS, Grova, C, Dubeau, F, Gotman, J. Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology. 2006 Apr 11;66(7):104955.Google Scholar
112. Waites, AB, Briellmann, RS, Saling, MM, Abbott, DF, Jackson, GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006 Feb;59(2):33543.Google Scholar
113. Laufs, H, Lengler, U, Hamandi, K, Kleinschmidt, A, Krakow, K. Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia. 2006 Feb;47(2):4448.Google Scholar
114. Pelletier, I, Sauerwein, HC, Lepore, F, Saint-Amour, D, Lassonde, M. Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disord. 2007 Jun;9(2):11126.Google Scholar
115. Abou-Khalil, B. An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives. Epilepsia. 2007 Mar;48(3):44255.Google Scholar
116. Benke, T, Koylu, B, Visani, P, Karner, E, Brenneis, C, Bartha, L, et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia. 2006 Aug;47(8):130819.Google Scholar
117. Ives, JR, Warach, S, Schmitt, F, Edelman, RR, Schomer, DL. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993 Dec;87(6):41720.Google Scholar
118. Allen, PJ, Josephs, O, Turner, R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage. 2000 Aug;12(2):2309.Google Scholar
119. Al-Asmi, A, Benar, CG, Gross, DW, Khani, YA, Andermann, F, Pike, B, et al. fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia. 2003 Oct;44(10):132839.Google Scholar
120. Benar, CG, Grova, C, Kobayashi, E, Bagshaw, AP, Aghakhani, Y, Dubeau, F, et al. EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage. 2006 May 1;30(4):116170.Google Scholar
121. Patel, MR, Blum, A, Pearlman, JD, Yousuf, N, Ives, JR, Saeteng, S, et al. Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring. AJNR Am J Neuroradiol. 1999 Nov-Dec;20(10):19169.Google Scholar