Hostname: page-component-6bf8c574d5-zc66z Total loading time: 0 Render date: 2025-03-04T09:28:40.279Z Has data issue: false hasContentIssue false

Safety of Dabigatran in Acute Ischemic Stroke Patients with Microbleeds: Post Hoc Analysis of DATAS-II Randomized Trial

Published online by Cambridge University Press:  30 January 2025

Pargol Balali
Affiliation:
McMaster University / Population Health Research Institute, Department of Neuroscience, Hamilton, ON, Canada
Ken Butcher
Affiliation:
University of South Wales, Department of Clinical Neurosciences, Sydney, NSW, Australia
Kelvin K.H. Ng
Affiliation:
McMaster University / Population Health Research Institute, Department of Medicine (Division of Neurology), Hamilton, ON, Canada
Raed A. Joundi
Affiliation:
McMaster University / Population Health Research Institute, Department of Medicine (Division of Neurology), Hamilton, ON, Canada
Scott E. Kasner
Affiliation:
University of Pennsylvania, Department of Neurology, Philadelphia, PA, USA
Aristeidis H. Katsanos
Affiliation:
McMaster University / Population Health Research Institute, Department of Medicine (Division of Neurology), Hamilton, ON, Canada
Mukul Sharma
Affiliation:
McMaster University / Population Health Research Institute, Department of Medicine (Division of Neurology), Hamilton, ON, Canada
Ashkan Shoamanesh*
Affiliation:
McMaster University / Population Health Research Institute, Department of Medicine (Division of Neurology), Hamilton, ON, Canada
*
Corresponding author: Ashkan Shoamanesh; Email: [email protected]

Abstract

Background:

Cerebral microbleeds are associated with an increased risk of hemorrhagic transformation (HT) following acute ischemic stroke. We investigated whether the effect of dabigatran (vs. aspirin) in patients with acute minor non-cardioembolic ischemic stroke/transient ischemic attack (TIA) is modified by baseline microbleeds on MRI.

Methods:

The Dabigatran Treatment of Acute Stroke II trial randomized 305 patients with acute minor non-cardioembolic ischemic stroke/TIA to dabigatran (150/110 mg twice daily) or aspirin (81 mg daily) for 30 days. Microbleeds were centrally adjudicated in patients with an interpretable blood-sensitive sequence on baseline MRI. In this post hoc analysis, we used multivariable regression models to determine the association between microbleeds and any incident HT on day-30 MRI and excellent functional outcome (modified Rankin scale = 0–1) at 90 days.

Results:

A total of 251 (82.3%) participants (mean age = 66 ± 13 years, 36% women, median [IQR] onset-to-randomization time = 40[27–55] hours; median [IQR] NIHSS = 1 [0–2]) were included, of whom 82 (33%) had microbleeds. On day-30 MRI, 6% (n = 14) developed HT, and 80% (n = 191) achieved 90-day mRS of 0–1. We found no association between microbleed presence and HT (adjusted OR = 0.84; 95%CI:0.21–3.25) or excellent functional outcome (adjusted RR = 1.09; 95%CI:0.94–1.26). The rate of HT in patients with microbleeds was 3% with dabigatran and 4% with aspirin (OR = 0.85; 95%CI:0.11–6.75). Excellent functional outcome occurred in 74% and 84% of dabigatran and aspirin-treated patients, respectively (RR = 0.88; 95%CI:0.69–1.12). The presence, severity or location of microbleeds did not modify the effect of dabigatran on these outcomes (p-interaction > 0.05).

Conclusions:

Early dabigatran treatment appears safe in patients with acute minor non-cardioembolic ischemic stroke/TIA and hemorrhage-prone cerebral small vessel disease marked by microbleeds on MRI.

Résumé

RÉSUMÉ

Innocuité du dabigatran chez des patients victimes d’un AVC ischémique aigu et présentant des microhémorragies : une analyse post-hoc de l’essai randomisé DATAS-II.

Contexte :

Les microhémorragies cérébrales sont associées à un risque accru de transformation hémorragique (TH) à la suite d’un AVC ischémique aigu. Nous avons ainsi cherché à savoir si l’effet du dabigatran (par opposition à l’aspirine) chez les patients victimes d’un AVC ischémique aigu mineur non cardio-embolique ou d’un accident ischémique transitoire (AIT) était modifié par la présence de microhémorragies observées lors d’examens d’IRM.

Méthodes :

L’étude DATAS-II a rendu aléatoires les dossiers de 305 patients victimes d’un AVC ischémique aigu mineur non cardio-embolique ou d’un AIT en lien avec un traitement de dabigatran (150/110 mg deux fois par jour) et d’aspirine (81 mg par jour), et ce, pendant 30 jours. Les microhémorragies ont été évaluées de manière centralisée chez les patients présentant une séquence sensible aux produits sanguins interprétable lors d’examens d’IRM de base. Dans le cadre de cette analyse post-hoc, nous avons utilisé des modèles de régression multivariable pour déterminer l’association entre les microhémorragies et toute TH détectable à l’occasion d’examens d’IRM au trentième jour, ainsi qu’entre ces mêmes microhémorragies et un excellent résultat fonctionnel (score de Rankin modifiée ou SRM = 0-1) au bout de 90 jours.

Résultats :

Au total, 251 (82,3 %) participants (âge moyen = 66±13 ans ; 36 % de femmes ; délai médian [EI] entre les débuts des AVC et la randomisation = 40 [27-55] heures ; NIHSS médian [EI] = 1 [0-2]) ont été inclus, dont 82 (33 %) présentaient des microhémorragies. Lors d’examens d’IRM au trentième jour, 6 % des participants (n = 14) ont développé une TH et 80 % d’entre eux (n = 191) ont donné à voir un SRM de 0-1 au bout de 90 jours. Il est à noter que nous n’avons pas trouvé d’association entre la présence de microhémorragies et de TH (RC ajusté = 0,84 ; IC 95 % : 0,21-3,25) ou un excellent résultat au SRM (RR ajusté = 1,09 ; IC 95 % : 0,94-1,26). Le taux de TH chez les patients présentant des microhémorragies était par ailleurs de 3 % avec le dabigatran et de 4 % avec l’aspirine (RC = 0,85 ; IC 95 % : 0,11-6,75). Un excellent résultat au SRM a été respectivement obtenu chez 74 % et 84 % des patients traités au moyen du dabigatran et de l’aspirine (RR = 0,88 ; IC 95 % : 0,69-1,12). Enfin, la présence, la sévérité ou la localisation des microhémorragies n’ont pas modifié l’effet du dabigatran sur ces résultats (p-interaction > 0,05).

Conclusions :

Un traitement précoce par le dabigatran semble sécuritaire chez les patients victimes d’un AVC ischémique aigu mineur non cardio-embolique ou d’un AIT et sujets à une maladie des petits vaisseaux cérébraux marquée par des microhémorragies observables lors d’examens d’IRM.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Trial Registration: ClinicalTrials.gov; identifier: NCT02295826.

References

Puy, L, Pasi, M, Rodrigues, M, et al. Cerebral microbleeds: from depiction to interpretation. J Neurol Neurosurg Psychiatry. 2021;92:598607. doi: 10.1136/jnnp-2020-323951. Published online February 9, 2021.Google Scholar
Wilson, D, Ambler, G, Lee, KJ, et al. Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. The Lancet Neurol. 2019;18(7):653665. doi: 10.1016/S1474-4422(19)30197-8.Google Scholar
Tsivgoulis, G, Zand, R, Katsanos, AH, et al. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. JAMA Neurol. 2016;73(6):675683. doi: 10.1001/jamaneurol.2016.0292.Google Scholar
Shoamanesh, A, Kwok, CS, Lim, PA, Benavente, OR. Postthrombolysis intracranial hemorrhage risk of cerebral microbleeds in acute stroke patients: a systematic review and meta-analysis. Int J Stroke. 2013;8(5):348356. doi: 10.1111/j.1747-4949.2012.00869.x.Google Scholar
Choi, KH, Kim, JH, Kang, KW, et al. Impact of microbleeds on outcome following recanalization in patients with acute ischemic stroke. Stroke. 2019;50(1):127134. doi: 10.1161/STROKEAHA.118.023084.Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):11391151. doi: 10.1056/NEJMoa0905561.Google Scholar
Butcher, KS, Ng, K, Sheridan, P, et al. Dabigatran treatment of acute noncardioembolic ischemic stroke. Stroke. 2020;51(4):11901198. doi: 10.1161/STROKEAHA.119.027569.Google Scholar
Ng, KH, Sharma, M, Benavente, O, et al. Dabigatran following acute transient ischemic attack and minor stroke II (DATAS II). Int J Stroke. 2017;12(8):910914. doi: 10.1177/1747493017711947.Google Scholar
Johnston, SC, Rothwell, PM, Nguyen-Huynh, MN, et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet. 2007;369(9558):283292. doi: 10.1016/S0140-6736(07)60150-0.Google Scholar
Pedraza, S, Puig, J, Blasco, G, et al. Reliability of the ABC/2 method in determining acute infarct volume. J Neuroimaging. 2012;22(2):155159. doi: 10.1111/j.1552-6569.2011.00588.x.Google Scholar
Piaggio, G, Elbourne, DR, Altman, DG, Pocock, SJ, Evans, SJW, CONSORT Group. Reporting of noninferiority and equivalence randomized trials: an extension of the CONSORT statement. JAMA. 2006;295(10):11521160. doi: 10.1001/jama.295.10.1152.Google Scholar
Cockcroft, DW, Gault, MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):3141. doi: 10.1159/000180580.Google Scholar
Wardlaw, JM, Smith, EE, Biessels, GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822838. doi: 10.1016/S1474-4422(13)70124-8.Google Scholar
Fazekas, F, Chawluk, JB, Alavi, A, Hurtig, HI, Zimmerman, RA. MR signal abnormalities at 1.5 T in alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351356. doi: 10.2214/ajr.149.2.351.Google Scholar
Fiorelli, M, Bastianello, S, von Kummer, R, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the european cooperative acute stroke study I (ECASS I) cohort. Stroke. 1999;30(11):22802284. doi: 10.1161/01.str.30.11.2280.Google Scholar
Renou, P, Sibon, I, Tourdias, T, et al. Reliability of the ECASS radiological classification of postthrombolysis brain haemorrhage: a comparison of CT and three MRI sequences. Cerebrovasc Dis. 2010;29(6):597604. doi: 10.1159/000312867.Google Scholar
Fiebach, JB, Bohner, G. T2*-weighted imaging enables excellent interobserver concordance but should not be considered as sole gold standard imaging for hemorrhagic transformation classification after thrombolysis. Cerebrovasc Diseases. 2010;29(6):605606. doi: 10.1159/000312868.Google Scholar
Shoamanesh, A, Pearce, LA, Bazan, C, et al. Microbleeds in the SPS3 trial: stroke, mortality and treatment interactions. Ann Neurol. 2017;82(2):196207. doi: 10.1002/ana.24988.Google Scholar
Shoamanesh, A, Hart, RG, Connolly, SJ, et al. Microbleeds and the effect of anticoagulation in patients with embolic stroke of undetermined source: an exploratory analysis of the NAVIGATE ESUS randomized clinical trial. JAMA Neurol. 2021;78(1):1120. doi: 10.1001/jamaneurol.2020.3836.Google Scholar
Cordonnier, C, Al-Shahi Salman, R, Wardlaw, J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards forstudy design and reporting. Brain. 2007;130(Pt 8):19882003. doi: 10.1093/brain/awl387.Google Scholar
Elsaid, AF, Fahmi, RM, Shehta, N, Ramadan, BM. Machine learning approach for hemorrhagic transformation prediction: capturing predictors’ interaction. Front Neurol. 2022;13:951401. doi: 10.3389/fneur.2022.951401.Google Scholar
Charidimou, A, Shoamanesh, A, Wilson, D, et al. Cerebral microbleeds and postthrombolysis intracerebral hemorrhage risk. Neurology. 2015;85(11):927934. doi: 10.1212/WNL.0000000000001923.Google Scholar
Nagaraja, N, Farooqui, A, Zahid, AB, Kaur, S. Factors associated with the presence of cerebral microbleeds and its influence on outcomes of stroke not treated with alteplase. Clin Neurol Neurosurg. 2021;207:106798. doi: 10.1016/j.clineuro.2021.106798.Google Scholar
Dannenberg, S, Scheitz, JF, Rozanski, M, et al. Number of cerebral microbleeds and risk of intracerebral hemorrhage after intravenous thrombolysis. Stroke. 2014;45(10):29002905. doi: 10.1161/STROKEAHA.114.006448.Google Scholar
Charidimou, A, Turc, G, Oppenheim, C, et al. Microbleeds, Cerebral Hemorrhage, and Functional Outcome After Stroke Thrombolysis. Stroke. 2017;48(8):20842090. doi: 10.1161/STROKEAHA.116.012992.Google Scholar
Sakuta, K, Yaguchi, H, Sato, T, et al. The impact of cerebral microbleeds presence on outcome following minor stroke treated with antiplatelet therapy. Front Neurol. 2020;11:522. doi: 10.3389/fneur.2020.00522.Google Scholar
Balali, P, Hart, RG, Smith, EE, et al. Cerebral microbleeds and asundexian in non-cardioembolic ischemic stroke: secondary analyses of the PACIFIC-STROKE randomized trial. Int J Stroke. 2023;19:526535. doi: 10.1177/17474930231216339. Published online November 10, 2023.Google Scholar
Supplementary material: File

Balali et al. supplementary material

Balali et al. supplementary material
Download Balali et al. supplementary material(File)
File 39.8 KB