Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T01:54:41.142Z Has data issue: false hasContentIssue false

Saccadic Eye Movements in Mild Traumatic Brain Injury: A Pilot Study OPEN ACCESS

Published online by Cambridge University Press:  23 September 2014

Sarah J. Mullen
Affiliation:
Ophthalmology & Vision Sciences, St. Michael's Hospital, Toronto, Ontario, Canada Laboratory Medicine & Pathobiology, Surgery, St. Michael's Hospital, Toronto, Ontario, Canada Division of Neurosurgery, Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
Yeni H. Yücel*
Affiliation:
Ophthalmology & Vision Sciences, St. Michael's Hospital, Toronto, Ontario, Canada Division of Neurosurgery, Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
Michael Cusimano
Affiliation:
Laboratory Medicine & Pathobiology, Surgery, St. Michael's Hospital, Toronto, Ontario, Canada Division of Neurosurgery, Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
Tom A. Schweizer
Affiliation:
Laboratory Medicine & Pathobiology, Surgery, St. Michael's Hospital, Toronto, Ontario, Canada Division of Neurosurgery, Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
Anton Oentoro
Affiliation:
Ophthalmology & Vision Sciences, St. Michael's Hospital, Toronto, Ontario, Canada Laboratory Medicine & Pathobiology, Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
Neeru Gupta
Affiliation:
Ophthalmology & Vision Sciences, St. Michael's Hospital, Toronto, Ontario, Canada Glaucoma & Nerve Protection Unit, St. Michael's Hospital, Toronto, Ontario, Canada
*
Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, 209 LKSKI, Room 409, Toronto, Ontario, M5B 1W8, Canada. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To investigate whether repeat saccadic reaction time (SRT) measurements using a portable saccadometer is useful to monitor patients with mild traumatic brain injury (mTBI).

Methods:

Seven patients with newly-diagnosed mTBI and five agematched controls were prospectively recruited from an emergency Department. Saccadic eye movements, symptom self-reporting and neuropsychological tests were performed within one week of injury and again at follow-up three weeks post-injury. Control patients underwent saccade recordings at similar intervals.

Results:

Median saccade reaction times were significantly prolonged within one week post-injury in mTBI compared to controls. At follow-up assessment there was no significant between-groups difference. Changes in median SRT between the two assessments were not statistically significant. Four of the seven mTBI patients showed significantly increased SRT at follow-up; three of the mTBI patients and all controls showed no significant change. Among the three mTBI patients with persistent decreased SRT, two experienced loss of consciousness and reported the greatest symptoms, while the third was the only subject with significant decrease in neuropsychological testing scores at both assessments.

Conclusion:

In three of seven mTBI patients, saccadic eye movements remained delayed within three weeks post-injury. These three patients also showed persistent symptoms or no improvement on neuropsychological testing. This pilot study using a portable saccadometer suggests that comparing SRT from three weeks post-injury to that within one week of injury may be useful for early detection of a subpopulation at risk of persistent disability from mTBI. This finding suggests that further investigation in a large study population is warranted.

Résumé

RÉSUMÉ

Les saccades oculaires dans le traumatisme cérébral léger : une étude pilote.

Objectif:

Le but de l'étude était d'évaluer si les mesures répétées du temps de réaction saccadique (TRS) au moyen d'un saccadomètre portable est utile pour le suivi des patients atteints d'un traumatisme cérébral léger (TCL).

Méthode:

Sept patients chez qui un diagnostic de TCL venait d'être posé et 5 sujets témoins appariés pour l'âge ont été recrutés prospectivement au département des urgences. Les saccades oculaires, les symptômes rapportés par le patient et les tests neuropsychologiques ont été documentés dans la semaine suivant le traumatisme et de nouveau au moment du suivi, 3 semaines après le traumatisme. L'enregistrement des saccades chez les patients témoins a été fait aux mêmes intervalles.

Résultats:

Les temps médians de réaction saccadique étaient prolongés significativement au cours de la semaine suivant le traumatisme chez les patients ayant subi un TCL par rapport aux témoins. Au moment de l'évaluation de suivi, il n'existait pas de différence significative entre les deux groupes de patients. Les changements dans le TRS médian entre les deux évaluations n'étaient pas significatifs au point de vue statistique. Quatre des 7 patients atteints d'un TCL avaient un TRS augmenté de façon significative au moment du suivi ; aucun changement n'a été observé chez 3 des patients atteints d'un TCL et chez les témoins. Parmi les trois patients atteints d'un TCL qui ont présenté une diminution persistante du TRS, 2 avaient eu une perte de conscience et rapporté les symptômes les plus sévères, alors que le troisième était le seul chez qui une diminution significative des scores aux tests neuropsychologiques lors des deux évaluations avait été notée.

Conclusion:

Chez 3 des 7 patients ayant subi un TCL le retard des saccades oculaires persistait 3 semaines après le traumatisme. Ces 3 patients présentaient également des symptômes persistants ou aucune amélioration lors des tests neuropsychologiques. Cette étude pilote effectuée au moyen d'un saccadomètre portable suggère que la comparaison du TRS evalué 3 semaines après le traumatisme à celui fait dans la semaine suivant le traumatisme pourrait être utile pour détecter précocement la sous-population de patients à risque d'invalidité persistante suite à un TCL. Selon nos observations, il serait justifié de procéder à des recherches sur un échantillon de patients plus considérable.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2014

References

1. Vos, PE, Battistin, L, Birbamer, G, et al; EFNS Task Force. EFNS guideline on mild traumatic brain injury: report of an EFNS task force. Eur J Neurol. 2002;9(3):20719.CrossRefGoogle ScholarPubMed
2. Peloso, PM, Carroll, LJ, Cassidy, JD, et al. Critical evaluation of the existing guidelines on mild traumatic brain injury. J Rehabil Med. 2004;(43 Suppl):10612.CrossRefGoogle ScholarPubMed
3. McCrea, M, Kelly, JP, Randolph, C, Cisler, R, Berger, L. Immediate neurocognitive effects of concussion. Neurosurgery. 2002;50(5): 103242.Google ScholarPubMed
4. Maruta, J, Lee, SW, Jacobs, EF, Ghajar, J. A unified science of concussion. Ann N Y Acad Sci. 2010;1208:5866.Google Scholar
5. McCrea, M, Iverson, GL, McAllister, TW, et al. An integrated review of recovery after mild traumatic brain injury (mTBI): implications for clinical management. Clin Neuropsychol. 2009; 23(8):136890.Google Scholar
6. Kushner, D. Mild traumatic brain injury: toward understanding manifestations and treatment. Arch Intern Med. 1998;158(15): 161724.Google Scholar
7. Tavender, EJ, Bosch, M, Green, S, et al. Quality and consistency of guidelines for the management of mild traumatic brain injury in the emergency department. Acad Emerg Med. 2011;18(8):8809.Google Scholar
8. Becker, W. Metrics. In: Wurtz, RH, Goldberg, ME, editors. The neurobiology of saccadic eye movements. Amsterdam:Elsevier; 1989. p. 1367.Google ScholarPubMed
9. Leigh, JR, Zee, DS, editors. The Saccadic System. In: The Neurology of Eye Movements. 3rd ed. New York: Oxford University Press; 1999. p. 10161.Google Scholar
10. Leigh, RJ, Kennard, C. Using saccades as a research tool in the clinical neurosciences. Brain. 2004;127(Pt 3):46077.CrossRefGoogle ScholarPubMed
11. Reddi, BA, Carpenter, RH. The influence of urgency on decision time. Nat Neurosci. 2000;3(8):82730.Google Scholar
12. Carpenter, RH. The saccadic system: a neurological microcosm. ACNR. 2004;4(1):68.Google Scholar
13. Brigell, MG, Goodwin, JA, Lorance, R. Saccadic latency as a measure of afferent visual conduction. Invest Ophthalmol Vis Sci. 1988;29(8):13318.Google Scholar
14. Reulen, JP. Latency of visually evoked saccadic eye movements. II. Temporal properties of the facilitation mechanism. Biol Cybern.1984;50(4):26371.Google Scholar
15. Kanjee, R, Yucel, YH, Steinbach, MJ, Gonzalez, EG, Gupta, N. Delayed saccadic eye movements in glaucoma. Eye Brain. 2012; 4:638.Google Scholar
16. Pearson, BC, Armitage, KR, Horner, CW, Carpenter, RH. Saccadometry: the possible application of latency distribution measurement for monitoring concussion. Br J Sports Med. 2007; 41(9):6102.CrossRefGoogle ScholarPubMed
17. Williams, IM, Ponsford, JL, Gibson, KL, Mulhall, LE, Curran, CA, Abel, LA. Cerebral control of saccades and neuropsychological test results after head injury. J Clin Neurosci. 1997;4(2):18696.Google Scholar
18. Heitger, MH, Anderson, TJ, Jones, RD. Saccade sequences as markers for cerebral dysfunction following mild closed head injury. Prog Brain Res. 2002;140:43348.Google Scholar
19. Heitger, MH, Jones, RD, Dalrymple-Alford, JC, Frampton, CM, Ardagh, MW, Anderson, TJ. Motor deficits and recovery during the first year following mild closed head injury. Brain Inj 2006; 20(8):80724.CrossRefGoogle ScholarPubMed
20. Carroll, LJ, Cassidy, JD, Holm, L, Karus, J, Coronado, VG; WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Center Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004;(43 Suppl):11325.Google Scholar
21. Reilly, JL, Lencer, R, Bishop, JR, Keedy, S, Sweeney, JA. Pharmacological treatment effects on eye movement control. Brain Cogn. 2008;68(3):41535.CrossRefGoogle ScholarPubMed
22. Sweeney, JA, Brew, BJ, Kelip, JG, Sidtis, JJ, Price, RW. Pursuit movement dysfunction in HIV-1 seropositive individuals. J Psychiatry Neurosci. 1991;16(5):24752.Google ScholarPubMed
23. Alessandrini, M, Bruno, E, Parisi, V, Uccioli, L, Giacomini, PG. Saccadic eye movement and visual pathways function in diabetic patients. An Otorrinolaringol Ibero Am. 2001;28(3):26980.Google Scholar
24. Munoz, DP, Broughton, JR, Goldring, JE, Armstrong, IT. Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res. 1998;121(4):391400.Google Scholar
25. Irving, EL, Steinbach, MJ, Lillakas, L, Babu, RJ, Hutchings, N. Horizontal saccade dynamics across the human life span. Invest Ophthalmol Vis Sci. 2006;47(6):247884.Google Scholar
26. Radloff, LS. The CES-D Scale: A self-report depression scale for research in the general population. Appl Psychol Meas. 1977; 1(3):385401.Google Scholar
27. Winograd-Gurvich, C, Georgiou-Karistianis, N, Fitzgerald, PB, Millist, L, Whilte, OB. Self-paced and reprogrammed saccades: differences between melancholic and non-melancholic depression. Neurosci Res. 2006;56(3):25360.Google Scholar
28. McCauley, SR, Pedroza, C, Brown, SA, et al. Confirmatory factor structure of the Center for Epidemiological Studies Depression Scale (CES-D) in mild-to-moderate traumatic brain injury. Brain Inj. 2006;20(5):51927.CrossRefGoogle Scholar
29. Bay, E, Hagerty, BM, Williams, RA. Depressive symptomatology after mild-to-moderate traumatic brain injury: a comparison of three measures. Arch Psychiatr Nurs. 2007;21(1):211.Google Scholar
30. Macciocchi, SN, Barth, JT, Alves, W, Rimel, RW, Jane, JA. Neuropsychological functioning and recovery after mild head injury in collegiate athletes. Neurosurgery. 1996;39(3):5104.Google Scholar
31. McCrea, M, Guskiewicz, KM, Marshall, SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19): 255663.CrossRefGoogle ScholarPubMed
32. Pellman, EJ, Lovell, MR, Viano, DC, Casson, IR. Concussion in professional football: recovery of NFL and high school athletes assessed by computerized neuropsychological testing – Part 12. Neurosurgery. 2006;58(2):26374.Google Scholar
33. Lannsjo, M, Borg, J, Bjorklund, G, Af Geijerstam, JL, Lundgren-Nilsson, A. Internal construct validity of the Rivermead Post- Concussion Symptoms Questionnaire. J Rehabil Med. 2011;43 (11):9971002.Google Scholar
34. King, NS, Crawford, S, Wenden, FJ, Moss, NE, Wade, DT. The Rivermead Post-Concussion Symptoms Questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242(9):58792.CrossRefGoogle ScholarPubMed
35. Falconer, EK, Geffen, GM, Olsen, SL, McFarland, K. The rapid screen of concussion: an evaluation of the non-word repetition test for use in mTBI research. Brain Inj. 2006;20(12):125163.CrossRefGoogle ScholarPubMed
36. Bazarian, JJ, Atabaki, S. Predicting postconcussion syndrome after minor traumatic brain injury. Acad Emerg Med. 2001;8(8): 78895.Google Scholar
37. Echemendia, RL, Putukian, M, Mackin, RS, Julian, LJ, Shoss, N. Neuropsychological test performance prior to and following sports-related mild traumatic brain injury. Clin J Sports Med. 2001;11(1):2331.Google Scholar
38. Lange, RT, Iverson, GL, Franzen, MD. Neuropsychological functioning following complicated vs. uncomplicated mild traumatic brain injury. Brain Inj. 2009;23(2):8391.Google Scholar
39. Preece, MH, Geffen, GM. The contribution of pre-existing depression to the acute cognitive sequelae of mild traumatic brain injury. Brain Inj. 2007;21(9):95161.CrossRefGoogle Scholar
40. Lovell, MR, Solomon, GS. Psychometric data for the NFL neuropsychological test battery. Appl Neuropsychol. 2011;18(3): 197209.Google Scholar
41. Echemendia, RJ, Herring, S, Bailes, J. Who should conduct and interpret the neuropsychological assessment in sports-related concussion? Br J Sports Med. 2009;43(Suppl 1):i325.Google Scholar
42. Sherman, EMS, Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary. 3rd ed. Strauss, E, editor. New York: Oxford University Press; 2006. p. 767.Google Scholar
43. Ober, JK, Przedpelska-Ober, E, Gryncewicz, W, et al. Handheld system for ambulatory measurement of saccadic durations of neurological patients. In: Gajda, J, editor. Modelling and measurement in medicine. Warsaw: Komitet Biocybernityki I Inzyneierii Biomedycznej PAN; 2003. p. 18798.Google Scholar
44. Pierrot-Deseilligny, C, Rivaud, S, Gaymard, B, Agid, Y. Cortical control of reflexive visually-guided saccades. Brain. 1991;114 (Pt 3):147385.Google Scholar
45. Michell, AW, Xu, Z, Fritz, D, et al. Saccadic latency distributions in Parkinson’s disease and the effects of L-dopa. Exp Brain Res. 2006;174(1):718.Google Scholar
46. Rivaud, S, Muri, RM, Gaymard, B, Vermersch, AI, Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp Brain Res. 1994;102(1):11020.Google Scholar
47. Fischer, B, Weber, H, Biscaldi, M, Aiple, F, Otto, P, Sturh, V. Separate populations of visually guided saccades in humans: reaction times and amplitudes. Exp Brain Res. 1993;92(3):52841.Google Scholar
48. Shafiq-Antonacci, R, Maruff, P, Whyte, S, Tyler, P, Dudgeon, P, Currie, J. The effects of age and mood on saccadic function in older individuals. J Gerontol B Psychol Sci Soc Sci. 1999;54(6): P3618.Google Scholar
49. Sparks, D, Rohrer, WH, Zhang, Y. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vision Res. 2000;40(20):276377.Google Scholar
50. Fischer, B, Biscaldi, M, Gezeck, S. On the development of voluntary and reflexive components in human saccade generation. Brain Res. 1997;754(1–2):28597.CrossRefGoogle ScholarPubMed
51. Schmidt, JD, Register-Mihalik, JK, Mihalik, JP, Kerr, ZY, Guskiewicz, KM. Identifying impairments after concussion: normative data versus individualized baselines. Med Sci Sports Exerc. 2012;44 (9):16218.Google Scholar
52. Antoniades, CA, Altham, PM, Mason, SL, Barker, RA, Carpenter, R. Saccadometry: a new tool for evaluating presymptomatic Huntington patients. Neuroreport. 2007;18(11):11336.Google Scholar
53. Burrell, JR, Hornberger, M, Carpenter, RH, Kiernan, MC, Hodges, JR. Saccadic abnormalities in frontotemporal dementia. Neurology. 2012;78(23):181623.Google Scholar
54. Heitger, MH, Jones, RD, Macleod, AD, Snell, DL, Frampton, CM, Anderson, TJ. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2009;132(Pt 10):285070.Google Scholar
55. Kelly, JP, Rosenberg, JH. Diagnosis and management of concussion in sports. Neurology. 1997;48(3):57580.Google Scholar
56. Heitger, MH, Macaskill, MR, Jones, RD, Anderson, TJ. The impact of mild closed head injury on involuntary saccadic adaptation: evidence for the preservation of implicit motor learning. Brain Inj. 2005;19(2):10917.Google Scholar
57. Ponsford, J, Willmott, C, Rothwell, A, et al. Factors influencing outcome following mild traumatic brain injury in adults. J Int Neuropsychol Soc. 2000;6(5):56879.CrossRefGoogle ScholarPubMed
58. Bazarian, JJ, Wong, T, Harris, M, Leahey, N, Mookerjee, S, Dombovy, M. Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Inj. 1999;13(3):17389.Google Scholar
59. Laker, SR. Epidemiology of concussion and mild traumatic brain injury. PM R. 2011;(10 Suppl 2):S3548.Google Scholar
60. Harmon, KG, Drezner, JA, Gammons, M, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):1526.Google Scholar