Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T14:25:35.088Z Has data issue: false hasContentIssue false

Role of Electrocorticography at Surgery for Lesion-related Frontal Lobe Epilepsy

Published online by Cambridge University Press:  05 August 2019

Richard Wennberg
Affiliation:
Division of Neurology, The Toronto Hospital, University of Toronto
Luis Felipe Quesney*
Affiliation:
Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
Andres Lozano
Affiliation:
Division of Neurosurgery, The Toronto Hospital, University of Toronto
André Olivier
Affiliation:
Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
Theodore Rasmussen
Affiliation:
Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
*
Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The prognostic significance of epileptiform activity (EA) recorded intraoperatively at electrocorticography (ECOG) in patients with lesion-related frontal lobe epilepsy (FLE) is unknown.

Methods:

The results of ECOG performed in 22 patients with intractable FLE and a circumscribed frontal lobe structural lesion were compared with postoperative seizure control. Three patients underwent re-operation for a total of 25 cases, 23/25 with post-resection ECOG. Lesions were neoplasms (12), hamartomas (6) and arteriovenous malformations (4).

Results:

Outcomes were 15/25 Class I, 5/25 Class III and 5/25 Class IV (Engel classification). Class I outcome was associated with pre-excision EA recorded from ≤ 2 gyri (p < 0.05) and absence of EA, or EA limited to the resection border, at post-excision ECOG (p < 0.01). Complete lesion excision was highly correlated with Class I outcome (p < 0.001). The most significant correlations were seen when ECOG and lesionectomy variables were considered together: all 12 cases with complete lesionectomy and absent post-excision EA distant to the resection border had Class I outcome (p < 0.00015) and all 13 cases with complete lesionectomy and pre-excision EA recorded from ≤ 2 gyri had Class I outcome (p < 0.00005).

Conclusions:

Postoperative seizure control in lesion-related FLE is assured in the setting of complete lesion resection with pre-excision EA recorded from ≤ 2 gyri and no post-excision EA distant to the resection border; complete lesion excision is of paramount importance.

Résumé:

Résumé:<span class='italic'>Introduction:</span>

La signification pronostique de l'activité épileptiforme (AÉ) enregistrée par électrocorticographie (ÉCOG) peropératoire chez les patients atteints d'épilepsie frontale (ÉF) associée à une lésion est inconnue.

<span class='italic'>Méthodes:</span>

Nous avons étudié les résultats de l'ÉCOG effectuée chez 22 patients ayant une ÉF réfractaire au traitement et une lésion circonscrite du lobe frontal en relation avec le contrôle des crises en postopératoire. Trois patients ont subi une deuxième intervention pour un total de 25 cas, dont 23/25 ÉCOG post-résection. Les lésions étaient des néoplasmes (12), des hamartomes (6) et des malformations artérioveineuses (4).

<span class='italic'>Résultats:</span>

Selon la classification d'Engel, 15/25 ont été classés I, 5/25 ont été classés III et 5/25 IV. Les résultats de classe I étaient associés à une AÉ préexcision enregistrée de ≤ 2 gyri (p < 0,05) et absence d'AÉ, ou AÉ confinée à la limite de la résection à l'ÉCOG post-excision (p < 0,01). Une excision complète de la lésion était hautement corrélée à un résultat de classe I (p < 0,001). Les corrélations les plus significatives ont été observées quand les variables ÉCOG et excision de la lésion étaient considérées ensemble: les 12 cas chez qui l'excision de la lésion était totale et en l'absence d'AÉ post-excision à distance de la limite de résection avaient des résultats de classe I (p < 0,00015) et les 13 cas chez qui l'excision de la lésion était totale et qui avaient une AÉ préexcision enregistrée à ≤ 2 gyri avaient des résultats de classe I (p < 0,00005).

<span class='italic'>Conclusions:</span>

Le contrôle des crise en postopératoire dans l'ÉF reliée à une lésion est assuré dans le contexte de la résection complète de la lésion avec une AÉ pré-excision de ≤ 2 gyri et pas d'AÉ post-excision à distance de la limite de résection; l'excision complète de la lésion est donc très importante.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Rasmussen, T. Surgical therapy of frontal lobe epilepsy. Epilepsia 1963; 4: 181-198.Google Scholar
2. Talairach, J, Bancaud, J, Szikla, G, et al. Approche nouvelle de la neurochirurgie de l'epilepsie. Methodologie stereotaxique et resultats therapeutiques. Neurochirurgie 1974; 20 (Suppl. 1): 1-240.Google Scholar
3. Rasmussen, T. Tailoring of cortical excisions for frontal lobe epilepsy. Can J Neurol Sci 1991; 18: 606-610.Google Scholar
4. Quesney, F, Constain, M, Rasmussen, T, Olivier, A, Palmini, A. Presurgical EEG investigation in frontal lobe epilepsy. Epilepsy Res 1992 (Suppl. 5): 55-69.Google Scholar
5. Salanova, V, Morris, H, Van Ness, P, et al. Comparison of scalp electroencephalogram with subdural electrocorticogram recordings and functional mapping in frontal lobe epilepsy. Arch Neurol 1993; 50: 294-299.Google Scholar
6. King, D, Smith, J, Murro, A, et al. Outcome of frontal resection for intractable seizures. Neurology 1993; 43 (Suppl. 2): 417.Google Scholar
7. Olivier, A. Surgery of frontal lobe epilepsy. In: Jasper H, Riggio, S, Goldman-Rakic, P, eds. Epilepsy and the Functional Anatomy of the Frontal Lobe. New York: Raven Press, 1995: 321-348.Google Scholar
8. Quesney, F, Cendes, F, Olivier, A, Dubeau, F, Andermann, F. Intracranial electroencephalographic investigation in frontal lobe epilepsy. In: Jasper, H, Riggio, S, Goldman-Rakic, P, eds. Epilepsy and the Functional Anatomy of the Frontal Lobe. New York: Raven Press, 1995: 243-258.Google Scholar
9. Cascino, G, Sharbrough, F, Trenerry, M, et al. Extratemporal cortical resections and lesionectomies for partial epilepsy: complications of surgical treatment. Epilepsia 1994; 35: 1085-1090.Google Scholar
10. Cukiert, A, Olivier, A, Andermann, F. Posttraumatic frontal lobe epilepsy with structural changes: excellent results after cortical resection. Can J Neurol Sci 1996; 23: 114-117.Google Scholar
11. Kazemi, N, So, E, Mosewich, R, et al. Resection of frontal encephalomalacias for intractable epilepsy: outcome and prognostic factors. Epilepsia 1997; 38: 670-677.Google Scholar
12. Salanova, V, Quesney, F, Rasmussen, T, Andermann, F, Olivier, A. Reevaluation of surgical failures and the role of reoperation in 39 patients with frontal lobe epilepsy. Epilepsia 1994; 35: 70-80.Google Scholar
13. Wennberg, R, Quesney, F, Olivier, A, Rasmussen, T. Electrocorticography and outcome in frontal lobe epilepsy. Electroencephalogr Clin Neurophysiol 1998; 106: 357-368.Google Scholar
14. Awad, I, Rosenfeld, J, Ahl, F, Hahn, J, Liiders, H. Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 1991; 32: 179-186.Google Scholar
15. Britton, J, Cascino, G, Sharbrough, F, Kelly, P. Low-grade glial neoplasms and intractable partial epilepsy: efficacy of surgical treatment. Epilepsia 1994; 35: 1130-1135.Google Scholar
16. Engel, J. Outcome with respect to epileptic seizures. In: Engel, J, ed. Surgical Treatment of the Epilepsies. New York: Raven Press, 1987: 553-571.Google Scholar
17. Hosain, S, Nagarajan, L, Fraser, R, Van Poznak, A, Labar, D. Effects of nitrous oxide on electrocorticography during epilepsy surgery. Electroencephalogr Clin Neurophysiol 1997; 102: 340-342.Google Scholar
18. Gloor, P. Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies. In: Purpura, D, Penry, J, Walter, R, eds. Neurosurgical Management of the Epilepsies. New York: Raven Press, 1975: 59-105.Google Scholar
19. Wennberg, R, Quesney, F, Villemure, J-G. Epileptiform and nonepileptiform paroxysmal activity from isolated cortex after functional hemispherectomy. Electroencephalogr Clin Neurophysiol 1997; 102: 437-442.Google Scholar
20. Rasmussen, T. Surgical treatment of complex partial seizures: results, lessons and problems. Epilepsia 1983; 24 (Suppl. 1): 65-76.Google Scholar
21. Penfield, W, Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown, 1954.Google Scholar
22. Echlin, F. The supersensitivity of chronically "isolated" cerebral cortex as a mechanism in focal epilepsy. Electroencephalogr Clin Neurophysiol 1959; 11: 697-722.Google Scholar
23. Yeh, H-S, Tew, J, Gartner, M. Seizure control after surgery on cerebral arteriovenous malformations. J Neurosurg 1993; 78: 12-18.Google Scholar
24. Dodick, D, Cascino, G, Meyer, F. Vascular malformations and intractable epilepsy: outcome after surgical treatment. Mayo Clin Proc 1994; 69: 741-745.Google Scholar
25. Palmini, A, Gambardella, A, Andermann, F, et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 1995; 37: 476-487.Google Scholar
26. Morrell, F. Secondary epileptogenesis in man. Arch Neurol 1985; 42: 318-335.Google Scholar
27. Palmini, A, Costa, J, Andermann, F, et al. Surgical results and correlates of surgical outcome in epileptic patients with localized cortical dysplastic lesions. Epilepsia 1996; 37 (Suppl. 5): 208.Google Scholar
28. Morrell, F, Whisler, W, Bleck, T. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 1989; 70: 231-239.Google Scholar
29. Tran, T, Spencer, S, Marks, D, et al. Significance of spikes recorded on electrocorticography in nonlesional medial temporal lobe epilepsy. Ann Neurol 1995; 38: 763-770.Google Scholar
30. Ebersole, J. Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia 1997; 38 (Suppl. 4): 1-5.Google Scholar
31. Otsubo, H, Hwang, P, Elliot, I, et al. Magnetoencephalography in children for extratemporal lobe epilepsy: surgical evaluation of epileptogenic zone. Epilepsia 1997; 38 (Suppl. 8): 151-152.Google Scholar