Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T23:24:57.209Z Has data issue: false hasContentIssue false

Ribonuclease Activity of Human Cerebrospinal Fluid

Published online by Cambridge University Press:  15 November 2018

E. Z. Rabin*
Affiliation:
Montreal General Hospital, McGill University, Montreal, Quebec and Division of Nephrology, Ottawa Civic Hospital, 1053 Carling Avenue, Ottawa, Ontario, Canada
V. Weinberger
Affiliation:
Montreal General Hospital, McGill University, Montreal, Quebec and Division of Nephrology, Ottawa Civic Hospital, 1053 Carling Avenue, Ottawa, Ontario, Canada
B. Tattrie
Affiliation:
Montreal General Hospital, McGill University, Montreal, Quebec and Division of Nephrology, Ottawa Civic Hospital, 1053 Carling Avenue, Ottawa, Ontario, Canada
*
Division of Nephrology, Ottawa Civic Hospital, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9, Canada
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ribonuclease activity of cerebrospinal fluid of 219 patients was studied. The normal level was 269 ±95 units/ml. Consistent elevations above 550 units/ml were found in. 1 Chronic cerebrovascular disease, 2 Spinal cord compression; 3. Tumors. The molecular weights of the ribonucleases in the cerebrospinal fluid are approximately 33,000; 21,000 and 15,000, the major species is the one with m w. 33,000.

Although the increase in the CSF ribonuclease activity is not disease specific, the measurement has provided corroborative help in cases when the CSF protein is normal.

The increase in CSF RNAase is not due to red or white blood cells and the immunologie data suggest that the CSF enzyme activity is derived from the blood stream Further studies are necessary to rule out a nerve cell origin of the CSF ribonuclease activity.

Résumé

Résumé

L’activité de la ribonucléase du liquide céphalorachidien de 219 patients fut étudiée Le niveau normal est de 269 ± 95 unités/ml. Des élévations constantes au-dessus de 550 unités/ml furent trouvées dans. 1) la maladie cérébro-vasculaire chronique; 2) la compression de la moëlle épiniére; 3) les tumeurs. Les poids moléculaires des ribonucléases dans le liquide céphalo-rachidien sont approximativement de l’ordre de 33,000; 21,000 et 15,000; la principale molécule a un poids moléculaire de 33,000.

Quoique l’augmentation de l’activité de la ribonucléase dans le LCR n’est pas spécifique à une maladie, cette mesure a fourni une aide supplémentaire dans les cas où les protéines du LCR sont normales.

L’augmentation de RNAase dans le LCR n’est pas dûe aux globules blancs ou rouges et les données immunologiques nous portent à croire que l’activité enzyniatique du LCR est dérivée de la circulation sanguine D’autres études sont nécessaires pour prouver une origine à partir des cellules nerveuses de l’activité de la ribonucléase du LCR.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1977

References

Andrews, P (1965). The gel filtration behaviour of proteins related to their molecular weight over a wide range. Biochem. J. 96: 595606.CrossRefGoogle ScholarPubMed
Bien, A. (1968). Ribonuclease activity of the cerebrospinal fluid in neurological diseases. Neur Neurochir. Pol. 18: 479483.Google Scholar
Chou, S. N., Aust, J. B., Moore, G. E. and Peyton, W. T. (1951). Radioactive iodinated serum albumin as tracer agent for diagnosis and localizing intracranial lesions. Proc. Soc. Exp. Biol. 77: 193.Google Scholar
Fink, K., Adam, W. S. and Skoog, W. (1971). Serum ribonuclease in multiple myeloma. Amer J. Med. 50: 450457 Google Scholar
Fleisher, G. A., Wakim, K. G. and Goldstein, N P. (1957). Glutamicoxaloacetic transaminase, and lactic dehydrogenase in serum and cerebrospinal fluid of patients with neurologic disorders. Mayo Clin. Proc. 32: 188197 Google Scholar
Fuchs, S., Cautrecasas, P., Ontjes, D. S. and Anfinsen, C. B. (1969). Correlation between the antigenic and catalytic properties of staphylococcal nuclease. J Biol. Chem. 244: 943950.Google Scholar
Hathaway, J. A., Berrett, C. R. and Hunter, D. T. (1971). Adenosine-5’-triphosphatase activity in cerebrospinal fluid. Clin. Chem. 17 658.Google Scholar
Herschkowitz, N. and Cummings, J. N. (1964). Creatine kinase in cerebrospinal fluid. J. Neurol. Neurosurg. Psychiat. 27 247250.Google Scholar
Hochwald, G. M. and Malhan, A. (1973). Effect of hypercapnia on CSF turnover and blood-brain barrier to protein. Arch. of Neurol. 28: 150155.Google Scholar
Hossman, K. A. and Kleinhues, P. (1973). Reversibility of ischemic brain damage. Arch. of Neur. 29 375384.Google Scholar
Hossman, K. A. and Olsson, Y. (1971). The effect of transient cerebral ischemia on the vascular permeability to protein tracers. Acta Neuropathol. 18: 103112.CrossRefGoogle Scholar
Hossman, K. A. and Olsson, Y. (1971). Influence of ischemia on the passage of protein tracers across capillaries in certain blood-brain barrier injuries. Acta. Neuropathol. 18: 113122.Google Scholar
Jakoby, R. K. and Jakoby, W B. (1958). Lactic dehydrogenase of cerebrovascular disease and brain tumor J. Neurosurg. 15: 4551.Google Scholar
Johnson, S. and Domino, E. F. (1965). Cholinergic enzymatic activity of cerebrospinal fluid of patients with various neurological diseases. Clin. Chim. Acta. 35: 421428.Google Scholar
Kulhanek, V. and Kabelacova, M. (1964). Aldolase activity in cerebrospinal fluid. Clin. Chim. Acta. 10: 2733.CrossRefGoogle ScholarPubMed
Lisak, R. P. and Craig, F. A. (1965). Lack of diagnostic value of creatine phosphokinase assay in spinal fluid. JAMA 199: 750751.Google Scholar
Mason, D. Y and Roberts-Thomson, P. (1974). Spinal fluid lysozyme in diagnosis of central nervous system tumors. Lancet 2: 952953.Google Scholar
O’Brien, M. D., Jordan, M. M. and Waltz, A. G. (1974). Ischemic cerebral edema and the blood-brain barrier. Arch. of Neurol. 30: 461465.Google Scholar
Olsson, Y. Crowell, R. M. and Klatzo, I. (1971). Blood-brain barrier to protein tracers in focal cerebral ischemia and infarction caused by occlusion of the middle cerebral artery Acta. Neuropathol. 18: 89102.Google Scholar
Ouchterlony, O. (1964). Gel diffusion techniques. In Immunological Methods. Ed. by Ackroyd, J. F.. F. A. Davis Co., 5578.Google Scholar
Rabin, E. Z. and Weinberger, V. (1975). The isolation, purification and properties of a ribonuclease from normal human urine. Biochem. Med. 14: 111 Google Scholar
Rabin, E. Z., Weinberger, V. and Tattrie, B. (1976). Ribonuclease activity in human serum, cerebrospinal fluid and urine. Manuscript submitted for publication.Google Scholar
Reddi, K. K. (1975). Nature and possible origin of serum ribonuclease. Biochem. Biophys. Res. Comm. 65: 110118.Google Scholar
Rinne, U. K. and Riekkinen, P. (1968). Esterase, peptidase and proteinase activities of human cerebrospinal fluid in multiple sclerosis. Acta. Neurol. Scand. 44: 156167 Google Scholar
Schapira, F. (1962). The normal aldolase activity of the CSF Clin. Chim. Acta. 7: 566571.Google Scholar
Schmukler, M., Jewett, P. B. and Levy, C. C. (1975). The effects of polyamines on a residue-specific human plasma ribonuclease. J. Biol. Chem. 250: 22062212.CrossRefGoogle ScholarPubMed
Schriever, H. and Gambino, S. R. (1965). Protein turbidity produced by trichloracetic acid and sulfosalicylic acid at varying temperatures and varying ratios of albumin and globulin. Amer. J. Clin. Path. 44: 667672.Google Scholar
Sweet, W. H., Brownell, G. L., School, J. A. Bowsher, D. R., Benda, P. and Stickley, E. E. (1954). The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. In Neurology and Psychiatry in Childhood. Vol. XXXIV p. 101, Williams and Wilkins, Baltimore.Google Scholar
Wakim, K. G. and Fleisher, G. A. (1956). The effect of experimental cerebral infarction or transaminase activity in serum, cerebrospinal fluid and infarcted tissue. Mayo Clin. Proc. 31: 391399.Google Scholar
Wolintz, A. H., Jacobs, L. D., Christoff, N., Solomon, M. and Chernik, N. (1969). Serum and cerebrospinal fluid enzymes in cerebrovascular disease. Creatine phosphokinase, aldolase, lactic dehydrogenase. Arch. of Neurol. 20: 5461.Google Scholar
Wroblewski, F, Decker, B. and Wroblewski, R. (1975). Activity of lactic dehydrogenase in spinal fluid. Amer. J. of Path. 38: 269271.Google Scholar
Zimmerman, S. B. and Sandeen, G. (1965). A sensitive assay for pancreatic ribonuclease. Anal. Biochem. 10: 444449.Google Scholar