Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T21:44:32.294Z Has data issue: false hasContentIssue false

A Review of Ancillary Tests in Evaluating Brain Death

Published online by Cambridge University Press:  02 December 2014

Manraj K.S. Heran*
Affiliation:
Division of Neuroradiology, Vancouver General Hospital Department of Radiology, Children’s and Women’s Health Center of British Colombia, University of British Columbia, Vancouver
Navraj S. Heran
Affiliation:
Division of Neurosurgery, Royal Columbian Hospital, New Westminster, British Columbia
Sam D. Shemie
Affiliation:
Division of Critical Care, Montreal Children’s Hospital, McGill University, Faculty of Arts, University of Ottawa, Ottawa, Ontario
*
Department of Radiology, Vancouver General Hospital, 899 W. 12th Avenue, Vancouver, British Columbia, V5Z 1M9,Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The neurological determination of death (NDD) is primarily considered to be clinical. However, situations may arise where confounding factors make this clinical assessment difficult or impossible. As a result, ancillary tests have been developed in order to aid in the confirmation of brain death. As assessment of neuronal electrical activity; electroencephalography (EEG) is no longer recommended in this determination, tools assessing cerebral perfusion, as reflected by the presence or absence of cerebral blood flow (CBF), are the mainstay of NDD. The preferred ancillary test currently is Hexamethylpropylene amine oxime-single photon emission computed tomography (HMPAO SPECT) radionuclide angiography. When this is not available, or is equivocal, 4-vessel cerebral angiography can be used to determine the presence or absence of intracranial blood flow. However, as cerebral angiography has its own limitations, other techniques are sought by physicians in the Intensive Care and Neuro-intensive Care settings to replace cerebral angiography. In this article, we briefly review the history of diagnosis of brain death, pathophysiologic issues in making this determination, and currently available CBF imaging techniques, discussing each in turn with respect to their utility in the diagnosis of brain death.

Résumé:

RÉSUMÉ:

La détermination neurologique de la mort (DNM) est considérée comme étant basée principalement sur la clinique. Cependant, il existe des situations où des facteurs confondants rendent cette évaluation clinique difficile, voir même impossible. Des tests d’appoint ont donc été mis au point afin de faciliter ce diagnostic. L’évaluation de l’activité électrique neuronale (ÉEG) n’est plus recommandée. Les outils permettant d’évaluer la perfusion cérébrale, soit la présence ou l’absence de flux sanguin cérébral (FSC), sont devenus les test de choix pour déterminer la DNM. L’épreuve d’appoint de choix actuellement est l’angiographie isotopique (SPECT HMPAO). Quand cet examen n’est pas disponible ou que ses résultats sont équivoques, une angiographie cérébrale des 4 vaisseaux peut être utilisée pour déterminer la présence ou l’absence de FSC. Cependant, l’angiographie cérébrale a ses propres limites et les médecins oeuvrant à l’unité de soins intensifs ou de soins intensifs neurologiques ont recours à d’autres techniques pour y suppléer. Nous analysons brièvement l’historique du diagnostic de mort cérébrale, les aspects physiopathologiques de la DNM et les techniques d’imagerie qui sont disponibles pour l’évaluation du FSC. Nous discutons de l’utilité de chacune de ces techniques pour établir un diagnostic de mort cérébrale.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. Mollaret, P, Goulon, M. [The depassed coma (preliminary memoir).]. Rev Neurol. (Paris) 1959 July;101:315.Google ScholarPubMed
2. A definition of irreversible coma. Report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA. 1968 August 5;205(6):33740.Google Scholar
3. Chan, JY, Chang, AY, Chan, SH. New insights on brain stem death: from bedside to bench. Prog Neurobiol. 2005 December;77(6): 396425.Google Scholar
4. Popp, E, Bottiger, BW. Cerebral resuscitation: state of the art, experimental approaches and clinical perspectives. Neurol Clin. 2006 February;24(1):7387, vi.CrossRefGoogle ScholarPubMed
5. Bonetti, MG, Ciritella, P, Valle, G, Perrone, E. 99mTc HM-PAO brain perfusion SPECT in brain death. Neuroradiology. 1995 July;37(5):3659.Google Scholar
6. An appraisal of the criteria of cerebral death. A summary statement. A collaborative study. JAMA. 1977 March 7;237(10):9826.Google Scholar
7. Darby, JM, Yonas, H, Gur, D, Latchaw, RE. Xenon-enhanced computed tomography in brain death. Arch Neurol. 1987 May;44(5):5514.CrossRefGoogle ScholarPubMed
8. Practice parameters for determining brain death in adults (summary statement). The Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 1995 May;45(5):10124.Google Scholar
9. Wijdicks, EF. Brain death worldwide: accepted fact but no global consensus in diagnostic criteria. Neurology. 2002 January 8; 58(1):205.Google Scholar
10. Young, B, Blume, W, Lynch, A. Brain death and the persistent vegetative state: similarities and contrasts. Can J Neurol Sci. 1989 November;16(4):38893.Google Scholar
11. Guidelines for the diagnosis of brain death. Canadian Neurocritical Care Group. Can J Neurol Sci. 1999 February;26(1):646.Google Scholar
12. Baron, L, Shemie, SD, Teitelbaum, J, Doig, CJ. Brief review: history, concept and controversies in the neurological determination of death. Can J Anaesth. 2006 June;53(6):6028.CrossRefGoogle ScholarPubMed
13. Bernat, JL. The concept and practice of brain death. Prog Brain Res. 2005;150:36979.Google Scholar
14. Astrup, J. Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg. 1982 April;56(4):48297.Google Scholar
15. Branston, NM, Ladds, A, Symon, L, Wang, AD. Comparison of the effects of ischaemia on early components of the somatosensory evoked potential in brainstem, thalamus, and cerebral cortex. J Cereb Blood Flow Metab. 1984 March;4(1):6881.Google Scholar
16. Hossmann, KA, Schuier, FJ. Experimental brain infarcts in cats. I. Pathophysiological observations. Stroke. 1980 November;11(6): 58392.Google Scholar
17. Jones, TH, Morawetz, RB, Crowell, RM, Marcoux, FW, FitzGibbon, SJ, DeGirolami, U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981 June;54(6):77382.Google Scholar
18. Markus, HS. Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry. 2004 March;75(3):35361.Google Scholar
19. Siesjo, BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg. 1992 August;77(2):16984.Google Scholar
20. Lassen, NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet. 1966 November19;2(7473):11135.CrossRefGoogle Scholar
21. Robertson, CS, Narayan, RK, Gokaslan, ZL, Pahwa, R, Grossman, RG, et al. Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg. 1989 February;70(2):22230.Google Scholar
22. Latchaw, RE, Yonas, H, Hunter, GJ, Yuh, WT, Ueda, T, Sorensen, AG, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003 April;34(4):1084104.Google Scholar
23. Heiss, WD, Hayakawa, T, Waltz, AG. Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol. 1976 December;33(12):81320.Google Scholar
24. Branston, NM, Symon, L, Crockard, HA, Pasztor, E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974 November;45(2):195208.CrossRefGoogle Scholar
25. Sharbrough, FW, Messick, JM Jr., Sundt, TM Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973 July;4(4):67483.CrossRefGoogle ScholarPubMed
26. Harris, RJ, Symon, L, Branston, NM, Bayhan, M. Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab. 1981;1(2):2039.CrossRefGoogle ScholarPubMed
27. Lang, EW, Chesnut, RM. Intracranial pressure and cerebral perfusion pressure in severe head injury. New Horiz. 1995 August;3(3): 4009.Google Scholar
28. Paulson, OB, Strandgaard, S, Edvinsson, L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):16192.Google Scholar
29. Grande, PO, Asgeirsson, B, Nordstrom, CH. Volume-targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand. 2002 September;46(8):92941.Google Scholar
30. Lang, CJ, Heckmann, JG. Apnea testing for the diagnosis of brain death. Acta Neurol Scand. 2005 December;112(6):35869.Google Scholar
31. Shemie, SD, Doig, C, Dickens, B, Byrne, P, Wheelock, B, Rocker, G, et al. Severe brain injury to neurological determination of death: Canadian forum recommendations. CMAJ. 2006 March 14;174(6):S113.Google Scholar
32. Young, GB, Lee, D. A critique of ancillary tests for brain death. Neurocrit Care. 2004;1(4):499508.Google Scholar
33. Kohrman, MH, Spivack, BS. Brain death in infants: sensitivity and specificity of current criteria. Pediatr Neurol. 1990 January;6(1):4750.Google Scholar
34. Wijdicks, EF. The diagnosis of brain death. N Engl J Med. 2001 April 19;344(16):121521.CrossRefGoogle ScholarPubMed
35. Palmer, S, Bader, MK. Brain tissue oxygenation in brain death. Neurocrit Care. 2005;2(1):1722.CrossRefGoogle Scholar
36. Karantanas, AH, Hadjigeorgiou, GM, Paterakis, K, Sfiras, D, Komnos, A. Contribution of MRI and MR angiography in early diagnosis of brain death. Eur Radiol. 2002 November;12(11):27106.Google Scholar
37. Marrache, F, Mégarbane, B, Pirnay, S, Rhaoui, a, Thuong, M. Difficulties in assessing brain death in a case of benzodiazepine poisoning with persistent cerebral blood flow. Hum Exp Toxicol. 2004 October;23(10):5035.Google Scholar
38. Monsein, LH. The imaging of brain death. Anaesth Intensive Care. 1995 February;23(1):4450.Google Scholar
39. Yoshikai, T, Tahara, T, Kuroiwa, T, Kato, A, Uchino, A, Abe, M, et al. Plain CT findings of brain death confirmed by hollow skull sign in brain perfusion SPECT. Radiat Med. 1997 November;15(6):41924.Google ScholarPubMed
40. Dominguez-Roldan, JM, Jimenez-Gonzalez, PI, Garcia-Alfaro, C, Hernandez-Hazañas, F, Murillo-Cabezas, F, Perez-Bernal, J. Identification by CT scan of ischemic stroke patients with high risk of brain death. Transplant Proc. 2004 November;36(9): 25623.Google Scholar
41. Geraghty, MC, Torbey, MT. Neuroimaging and serologic markers of neurologic injury after cardiac arrest. Neurol Clin. 2006 February;24(1):10721, vii.Google Scholar
42. Arnold, H, Kuhne, D, Rohr, W, Heller, M. Contrast bolus technique with rapid CT scanning. A reliable diagnostic tool for the determination of brain death. Neuroradiology. 1981;22(3): 12932.Google Scholar
43. Dupas, B, Gayet-Delacroix, M, Villers, D, Antonioli, D, Veccherini, MF, Soulillou, JP. Diagnosis of brain death using two-phase spiral CT. AJNR Am J Neuroradiol. 1998 April;19(4):6417.Google Scholar
44. Tan, WS, Wilbur, AC, Jafar, JJ, Spigos, DG, Abejo, R. Brain death: use of dynamic CT and intravenous digital subtraction angiography. AJNR Am J Neuroradiol. 1987 January;8(1):1235.Google Scholar
45. Lee, DH, Nathanson, JA, Fox, AJ, Pelz, DM, Lownie, SP. Magnetic resonance imaging of brain death. Can Assoc Radiol J. 1995 June;46(3):1748.Google Scholar
46. Matsumura, A, Meguro, K, Tsurushima, H, Komatsu, Y, Kikuchi, Y, Wada, M, et al. Magnetic resonance imaging of brain death. Neurol Med Chir. (Tokyo) 1996 March;36(3):16671.Google Scholar
47. Progressive brain failure after diffuse hypoxic ischemic brain injury: a serial MR and proton MR spectroscopic study. AJNR Am J Neuroradiol. 1998 April;19(4):64852.Google Scholar
48. Jones, KM, Barnes, PD. MR diagnosis of brain death. AJNR Am J Neuroradiol. 1992 January;13(1):656.Google Scholar
49. Lovblad, KO, Bassetti, C. Diffusion-weighted magnetic resonance imaging in brain death. Stroke. 2000 February;31(2):53942.Google Scholar
50. McKinney, AM, Teksam, M, Felice, R, Casey, SO, Cranford, R, Truwit, CL, et al. Diffusion-weighted imaging in the setting of diffuse cortical laminar necrosis and hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol. 2004 November; 25(10):165965.Google Scholar
51. Kumada, K, Fukuda, A, Yamane, K, Horiuchi, I, Kohama, A, Hirano, K, et al. [Diffusion-weighted imaging of brain death: study of apparent diffusion coefficient]. No To Shinkei. 2001 November;53(11):102731.Google Scholar
52. Nakahara, M, Ericson, K, Bellander, BM. Diffusion-weighted MR and apparent diffusion coefficient in the evaluation of severe brain injury. Acta Radiol. 2001 July;42(4):3659.Google Scholar
53. Sener, RN. Diffusion MRI in the postmortem brain: case report. J Neuroradiol. 2004 December;31(5):4068.Google Scholar
54. Aichner, F, Felber, S, Birbamer, G, Luz, G, Judmaier, W, Schmutzhard, E. Magnetic resonance: a noninvasive approach to metabolism, circulation, and morphology in human brain death. Ann Neurol. 1992 October;32(4):50711.Google Scholar
55. Garde, K, Mortensen, AC, Toft, PB, Sørensen, MB, Madsen, FF, Henriksen, O. Phosphorous and proton spectroscopy in relation to near incarceration and incarceration of the human brain. Acta Radiol. 1994 March;35(2):197200.Google Scholar
56. Terk, MR, Gober, JR, DeGiorgio, C, Wu, P, Colletti, PM. Brain death in the neonate: assessment with P-31 MR spectroscopy. Radiology. 1992 February;182(2):5823.CrossRefGoogle ScholarPubMed
57. Kosteljanetz, M, Ohrstrom, JK, Skjodt, S, Teglbjaerg, PS. Clinical brain death with preserved cerebral arterial circulation. Acta Neurol Scand. 1988 November;78(5):41821.Google Scholar
58. Alvarez, LA, Lipton, RB, Hirschfeld, A, Salamon, O, Lantos, G. Brain death determination by angiography in the setting of a skull defect. Arch Neurol. 1988 February;45(2):2257.Google Scholar
59. Braum, M, Ducrocq, X, Huot, JC, Audibert, G, Anxionnat, R, Picard, L. Intravenous angiography in brain death: report of 140 patients. Neuroradiology. 1997 June;39(6):4005.CrossRefGoogle ScholarPubMed
60. Hansen, AV, Lavin, PJ, Moody, EB, Sandler, MP. False-negative cerebral radionuclide flow study, in brain death, caused by a ventricular drain. Clin Nucl Med. 1993 June;18(6):5025.Google Scholar
61. Petty, GW, Mohr, JP, Pedley, TA, Tatemichi, TK, Lennihan, L, Duterte, DI, et al. The role of transcranial Doppler in confirming brain death: sensitivity, specificity, and suggestions for performance and interpretation. Neurology. 1990 February;40(2):3003.CrossRefGoogle ScholarPubMed
62. Pribram, HF. Angiographic appearances in acute intracranial hypertension. Neurology. 1961 January;11:1021.Google Scholar
63. de Campo, MP. Imaging of brain death in neonates and young infants. J Paediatr Child Health. 1993 August;29(4):2558.CrossRefGoogle ScholarPubMed
64. Flowers, WM Jr., Patel, BR. Persistence of cerebral blood flow after brain death. South Med J. 2000 April;93(4):36470.Google Scholar
65. Kurtek, RW, Lai, KK, Tauxe, WN, Eidelman, BH, Fung, JJ. Tc-99m hexamethylpropylene amine oxime scintigraphy in the diagnosis of brain death and its implications for the harvesting of organs used for transplantation. Clin Nucl Med. 2000 January;25(1): 710.CrossRefGoogle ScholarPubMed
66. Heiskanen, O. Cerebral circulatory arrest caused by acute increase of intracranial pressure. A clinical and roentgenological study of 25 cases. Acta Neurol Scand Suppl. 1964;40:Suppl. 7:157.Google Scholar
67. Bergquist, E, Bergstrom, K. Angiography in cerebral death. Acta Radiol Diagn. (Stockh) 1972 May;12(3):2838.Google Scholar
68. Bradac, GB, Simon, RS. Angiography in brain death. Neuroradiology. 1974;7(1):258.Google Scholar
69. Facco, E, Zucchetta, P, Munari, M, Baratto, F, Behr, AU, Gregianin, M, et al. 99mTc-HMPAO SPECT in the diagnosis of brain death. Intensive Care Med. 1998 September;24(9):9117.Google Scholar
70. Okuyaz, C, Gücüyener, K, Karabacak, NI, Aydin, K, Serdaroĝlu, A, Cingi, E. Tc-99m-HMPAO SPECT in the diagnosis of brain death in children. Pediatr Int. 2004 December;46(6):7114.Google Scholar
71. Munari, M, Zucchetta, P, Carollo, C, Gallo, F, De Nardin, M, Marzola, MC, et al. Confirmatory tests in the diagnosis of brain death: comparison between SPECT and contrast angiography. Crit Care Med. 2005 September;33(9):206873.Google Scholar
72. Weckesser, M, Schober, O. Brain death revisited: utility confirmed for nuclear medicine. Eur J Nucl Med. 1999 November;26(11):138791.CrossRefGoogle ScholarPubMed
73. Wieler, H, Marohl, K, Kaiser, KP, Klawki, P, Frössler, H. Tc-99m HMPAO cerebral scintigraphy. A reliable, noninvasive method for determination of brain death. Clin Nucl Med. 1993 February;18(2):1049.Google Scholar
74. Vander Borght, T, Laloux, P, Maes, A, Salmon, E, Goethals, I, Goldman, S. Guidelines for brain radionuclide imaging. Perfusion single photon computed tomography (SPECT) using Tc-99m radiopharmaceuticals and brain metabolism positron emission tomography (PET) using F-18 fluorodeoxyglucose. The Belgian Society for Nuclear Medicine. Acta Neurol Belg. 2001 December;101(4):196209.Google Scholar
75. Leclerc, X, Taschner, CA, Vidal, A, Strecker, G, Savage, J, Gauvrit, JY, et al. The role of spiral CT for the assessment of the intracranial circulation in suspected brain-death. J Neuroradiol. 2006 April;33(2):905.Google Scholar
76. Qureshi, AI, Kirmani, JF, Xavier, AR, Siddiqui, AM. Computed tomographic angiography for diagnosis of brain death. Neurology. 2004 February 24;62(4):6523.Google Scholar
77. Yu, SL, Lo, YK, Lin, SL, Lai, PH, Huang, WC. Computed tomographic angiography for determination of brain death. J Comput Assist Tomogr. 2005 July;29(4):52831.Google Scholar
78. Abe, H, Murakami, T, Kubota, M, Kim, T, Hori, M, Kudo, M, et al. Quantitative tissue blood flow evaluation of pancreatic tumor: comparison between xenon CT technique and perfusion CT technique based on deconvolution analysis. Radiat Med. 2005 August;23(5):36470.Google Scholar
79. Kudo, K, Terae, S, Katoh, C, Oka, M, Shiga, T, Tamaki, N, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol. 2003 March;24(3):41926.Google Scholar
80. Schaefer, PW, Roccatagliata, L, Ledezma, C, Hoh, B, Schwamm, LH, Koroshetz, W, et al. First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy. AJNR Am J Neuroradiol. 2006 January;27(1):205.Google Scholar
81. Wintermark, M, Thiran, JP, Maeder, P, Schnyder, P, Meuli, R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001 May;22(5):90514.Google Scholar
82. DeWitt, DS, Fatouros, PP, Wist, AO, Stewart, LM, Kontos, HA, Hall, JA, et al. Stable xenon versus radiolabeled microsphere cerebral blood flow measurements in baboons. Stroke. 1989 December;20(12):171623.Google Scholar
83. Fatouros, PP, Wist, AO, Kishore, PR, DeWitt, DS, Hall, JA, Keenan, RL, et al. Xenon/computed tomography cerebral blood flow measurements. Methods and accuracy. Invest Radiol. 1987 September;22(9):70512.CrossRefGoogle ScholarPubMed
84. Gur, D, Yonas, H, Jackson, DL, Wolfson, SK Jr, Rockette, H, Good, WF, et al. Measurement of cerebral blood flow during xenon inhalation as measured by the microspheres method. Stroke. 1985 September;16(5):8714.Google Scholar
85. Ashwal, S, Schneider, S. Brain death in the newborn. Pediatrics. 1989 September;84(3):42937.Google Scholar
86. Pistoia, F, Johnson, DW, Darby, JM, Horton, JA, Applegate, LJ, Yonas, H. The role of xenon CT measurements of cerebral blood flow in the clinical determination of brain death. AJNR Am J Neuroradiol. 1991 January;12(1):97103.Google Scholar
87. Thompson, JR, Ashwal, S, Schneider, S, Hasso, AN, Hinshaw, DB Jr, Kirk, G. Comparison of cerebral blood flow measurements by xenon computed tomography and dynamic brain scintigraphy in clinically brain dead children. Acta Radiol Suppl. 1986;369: 6759.Google Scholar
88. Ishii, K, Onuma, T, Kinoshita, T, Shiina, G, Kameyama, M, Shimosegawa, Y. Brain death: MR and MR angiography. AJNR Am J Neuroradiol. 1996 April;17(4):7315.Google Scholar
89. Wintermark, M, Sesay, M, Barbier, E, Borbély, K, Dillon, WP, Eastwood, JD, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005 September;36(9):e83e99.Google Scholar
90. Young, GB, Shemie, SD, Doig, CJ, Teitelbaum, J. Brief review: the role of ancillary tests in the neurological determination of death. Can J Anaesth. 2006 June;53(6):6207.Google Scholar
91. de Freitas, GR, André, C, Bezerra, M, Nunes, RG, Vincent, M. Persistence of isolated flow in the internal carotid artery in brain death. J Neurol Sci. 2003 June 15;210(1-2):314.Google Scholar
92. Nau, R, Prange, HW, Klingelhöfer, J, Kukowski, B, Sander, D, Tchorsch, R, et al. Results of four technical investigations in fifty clinically brain dead patients. Intensive Care Med. 1992; 18(2):828.CrossRefGoogle ScholarPubMed
93. Rodriguez, RA, Cornel, G, Alghofaili, F, Hutchison, J, Nathan, HJ. Transcranial Doppler during suspected brain death in children: potential limitation in patients with cardiac “shunt”. Pediatr Crit Care Med. 2002 April;3(2):1537.Google Scholar
94. Prince, MR, Meaney, JF. Expanding role of MR angiography in clinical practice. Eur Radiol. 2006 February;16 Suppl 2:B3B8.Google Scholar
95. Langer, DJ, Lefton, DR, Ostergren, L, Brockington, CD, Song, J, Niimi, Y, et al. Hemispheric revascularization in the setting of carotid occlusion and subclavian steal: a diagnostic and management role for quantitative magnetic resonance angiography? Neurosurgery. 2006 March;58(3):52833.Google Scholar
96. Neff, KW, Horn, P, Schmiedek, P, Düber, C, Dinter, DJ. 2D cine phasecontrast MRI for volume flow evaluation of the brain-supplying circulation in moyamoya disease. AJR Am J Roentgenol. 2006 July;187(1):W107W115.Google Scholar
97. Oktar, SO, Yücel, C, Karaosmanoglu, D, Akkan, K, Ozdemir, H, Tokgoz, N, et al. Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imaging. AJNR Am J Neuroradiol. 2006 February;27(2):3639.Google ScholarPubMed
98. Cashen, TA, Carr, JC, Shin, W, Walker, MT, Futterer, SF, Shaibani, A, et al. Intracranial time-resolved contrast-enhanced MR angiography at 3T. AJNR Am J Neuroradiol. 2006 April;27(4):8229.Google Scholar
99. Meckel, S, Mekle, R, Taschner, C, Haller, S, Scheffler, K, Radue, EW, et al. Time-resolved 3D contrast-enhanced MRA with GRAPPA on a 1.5-T system for imaging of craniocervical vascular disease: initial experience. Neuroradiology. 2006 May;48(5):2919.Google Scholar
100. Wilkening, M, Louvier, N, D’Athis, P, Freysz, M. [Validity of cerebral angiography via venous route in the diagnosis of brain death]. Bull Acad Natl Med. 1995 January;179(1):418.Google ScholarPubMed
101. Al-Shammri, S, Al-Feeli, M. Confirmation of brain death using brain radionuclide perfusion imaging technique. Med Princ Pract. 2004 September;13(5):26772.CrossRefGoogle ScholarPubMed