Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T02:18:02.667Z Has data issue: false hasContentIssue false

Relationship Between O6-methylguanine-DNA Methyltransferase Levels and Clinical Response Induced by Chloroethylnitrosourea Therapy in Glioma Patients

Published online by Cambridge University Press:  05 August 2019

Zhong-Ping Chen
Affiliation:
From Lady Davis Institute for Medical Research, the Sir Mortimer B. Davis Jewish General Hospital Division of Neurosurgery, the Sir Mortimer B. Davis Jewish General Hospital
Daniel Yarosh
Affiliation:
Applied Genetics Inc., New York, U.S.A.
Yesenia Garcia
Affiliation:
Applied Genetics Inc., New York, U.S.A.
Donatella Tampieri
Affiliation:
Montreal Neurological Institute, Montreal, Quebec
Gérard Mohr
Affiliation:
Division of Neurosurgery, the Sir Mortimer B. Davis Jewish General Hospital
Areti Malapetsa
Affiliation:
From Lady Davis Institute for Medical Research, the Sir Mortimer B. Davis Jewish General Hospital
Adrian Langleben
Affiliation:
Division of Medical Oncology, Royal Victoria Hospital, Montreal, Quebec
Lawrence C. Panasci*
Affiliation:
From Lady Davis Institute for Medical Research, the Sir Mortimer B. Davis Jewish General Hospital Division of Medical Oncology, the Sir Mortimer B. Davis Jewish General Hospital
*
Reprint requests to: Lawrence C. Panasci, the Lady Davis Institute for Medical Research, the Sir Mortimer B. Davis Jewish General Hospital, 3755 Côte Ste Catherine, Montreal, Quebec, Canada H3T 1E2
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Adjuvant nitrosourea chemotherapy fails to prolong survival significantly as many tumors demonstrate resistance to these drugs. It has been documented in cell lines that O6-methylguanine DNA methyltransferase (MGMT) plays an important role in chloroethylnitrosourea (CENU) drug resistance.

Methods:

We evaluated MGMT expression in 22 glioma specimens by using an immunofluorescence assay and compared the results with clinical responses of the patients to CENU-based chemotherapy.

Results:

Eight tumor samples had no detectable MGMT, whereas other samples had from 9,989 to 982,401 molecules/nucleus. In one group (12 patients), the tumor decreased in size or was stable (effective group), whereas in the other group (10 patients), the tumor demonstrated continuous growth during chemotherapy (progressive group). The Mer- patients (MGMT < 60,000 molecules/nucleus) appeared to have more chance of stable disease or response to CENU therapy than the Mer+ patients (MGMT > 60,000 molecules/nucleus) (X2 = 4.791, p = 0.0286). In patients with glioblastomas multiforme (GBMs), the median time to progression (TTP) of Mer+ patient was shorter than that of Mer- patient (t = 2.04, p = 0.049). As a corollary, the MGMT levels were significantly higher in GBM tumors from the progressive group than those from the effective group (t = 2.26, p = 0.029). However, there was no significant correlation between MGMT levels and either the survival time (r = 0.04, p = 0.8595) or TTP (r = 0.107, p = 0.6444).

Conclusion:

This study suggests that being MGMT positive is indicative of a more aggressive disease that progresses more rapidly with CENU therapy. However, MGMT negative tumors are not always sensitive to CENU agents, suggesting that other factors are also important.

Résumé:

Résumé:Introduction:

La chimiothérapie adjuvante à base de nitrosurées ne prolonge pas significativement la survie des patients atteints de gliome malin parce que plusieurs de ces tumeurs y sont résistantes. Il a été démontré qu'en culture cellulaire, la o6-méthylguanine-ADN méthyltransférase (MGMT) joue un rôle important dans la résistance pharmacologique à la chloroéthyl-nitrosurée (CENU).

Méthodes:

Nous avons évalué l'expression de la MGMT dans 22 spécimens de gliome à l'aide d'un essai par immunofluorescence et avons comparé ces résultats avec la réponse clinique des malades traités par chimiothérapie à base de la CENU.

Résultats:

Huit spécimens n'avaient pas de MGMT détectable alors que les autres spécimens avaient de 9,989 à 982,401 molécules/noyau. Dans un groupe de 12 malades, la taille de la tumeur a diminué ou est restée stable (groupe répondeur), tandis que dans un autre groupe de 10 patients, la tumeur a continué de progresser durant la chimiothérapie (groupe avec progression). Le groupe de patients Mer- (MGMT < 60,000 molécules/noyau) a semblé avoir une plus grande probabilité que la maladie soit stable ou de présenter une réponse au traitement par la CENU que le groupe Mer+ (MGMT < 60,000 molécules/noyau) (X2 = 4.791, p = 0.0286). Chez les malades porteurs de glioblastomes multiformes (GBM), le laps de temps moyen écoulé jusqu'à ce qu'on note une progression (TMP) était plus court pour le groupe Mer+ que pour le groupe Mer- (t =2.04, p = 0.049). En corollaire, les niveaux de MGMT étaient significativement plus élevés dans les tumeurs des patients du groupe avec progression que dans celles des patients du groupe où le traitement était efficace (t = 2.26, p = 0.029). Cependant, il n'y avait pas de relation significative entre les niveaux de MGMT et le temps de survie (r = 0.04, p = 0.8595) ou le TMP (r = 0.107, p = 0.644).

Conclusion:

Cette étude suggère que la positivité pour la MGMT indique la présence d'une maladie plus agressive qui progresse plus rapidement sous traitement par la CENU. Cependant, les tumeurs négatives pour la MGMT ne sont pas toujours sensibles à la CENU, ce qui suggère que d'autres facteurs sont également importants dans la réponse à la chimiothérapie.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 1999

Footnotes

Presented as the Francis McNaughton Memorial Prize at the 33rd Meeting of the Canadian Congress of Neurological Sciences, June 19, 1998 in Montreal, Quebec.

References

1. Kohn, KW, Erickson, LC, Laurent, G, et al. DNA crosslinking and the origin of sensitivity to chloroethylnitrosourea. In: Prestayko, AW, Crooke, ST, Baker, LH, Carter, SK, Schein, PS eds. Nitrosoureas. New York: Academic Press 1981; 69-83.Google Scholar
2. Tong, WP, Kirk, MC, Ludlum, DB. Formation of the cross-link 1- [N3-deoxycytidyl), 2[Nl-deoxyguanosinyl] ethane in DNA treated with N, N'-bis (2-chloroethyl) 1-N-nitrosourea. Cancer Res 1982; 42: 3102-3105.Google Scholar
3. Yarosh,, DB. The role of 06-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat Res 1985; 145: 1-16.Google Scholar
4. Pegg, AE. Mammalian Os-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic an agents. Cancer Res 1990; 50: 6119-6129.Google Scholar
5. Brent, TP, Houghton, PJ, Houghton, JA. Os-alkylguanine-DNA alkyltransferase activity correlates with the therapeutic response of human rhabdomyosarcoma xenografts to CCNU. Proc Natl Acad Sci USA 1985; 82: 2985-2989.Google Scholar
6. Gonzaga, PE, Potter, PM, Niu, TQ, et al. Identification of the crosslink between human 06-methylguanine-DNA methyltransferase and chloroethylnitrosourea-treated DNA. Cancer Res 1992; 52: 6052-6058.Google Scholar
7. JrSchold, SC, Kokkinakis, DM, Rudy, JL, et al. Treatment of human brain tumor xenografts with 06-benzyl-2'-deoxyguanosine and BCNU. Cancer Res 1996; 56: 2076-2081.Google Scholar
8. Erickson, LC, Laurent, G, Sharkey, NA, et al. DNA crosslinking and monoadduct repair nitrosourea-treated human tumor cells. Nature (Lond) 1980; 288: 727-729.Google Scholar
9. Scuderio, DA, Meyers, SA, Clatterbuck, BE, et al. Ziolkowski Day RS. Sensitivity of human cell strains having different abilities to repair 06-methylguanine in DNA to inactivation by alkylating agents including chloroethylnitrosoureas. Cancer Res 1984; 44: 2467-2474.Google Scholar
10. Dolan, ME, Mitchell, RB, Mummert, C, et al. Effect of 06-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res 1991; 51: 3367-3372.Google Scholar
11. Bobola, MS, Berger, MS, Silber, JR. Contribution of 06-methylguanine- DNA methyltranferase to resistance to l,3-(2-chloroethyl-lnitrosourea in human brain tumor-derived cell lines. Mol Carcinog 1995; 13: 81-88.Google Scholar
12. Phillips, WP Jr, Willson, JKV, Markowitz, SD, et al. 06methylguanine- DNA methyltransferase (MGMT) transfectants of a l,3-(2- chloroethyl-1-nitrosourea (BCNU)-sensitive colon cancer cell line selectively repopulate heterogeneous MGMT+/MGMTxenografts after BCNU and 06-benzylguanine plus BCNU. Cancer Res 97; 57: 4817-4823.Google Scholar
13. Koc, ON, JrPhillips, WP, Lee, K, et al. Role of DNA repair in resistance to drugs that alkylate O6 of guanine. Cancer Treat Res 1996; 87: 123-146.Google Scholar
14. Mineura, K, Watanabe, K, Yanagisawa, T, et al. Quantification of O6- methylguanine-DNA methyltransferase mRNA in human brain tumors. Biochim Biophys Acta 1996; 1289: 105-109.Google Scholar
15. Nutt, CL, Costello, JF, Bambrick, LL, et al. 06-methylguanine-DNA methyltransferase in tumors and cells of the oligodendrocyte lineage. Can J Neurol Sci 1995; 22: 111-115.Google Scholar
16. Belanich, M, Pastor, M, Randall, T, et al. Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res 1996; 56: 783-778.Google Scholar
17. Jaeckle, KA, Eyre, HJ, Townsend, JJ, et al. Correlation of tumor O6- methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J Clin Oncol 1998; 16: 3310-3315.Google Scholar
18. Chen, Z-P, Malapetsa, A, McQuillan, A, et al. Evidence for nucleotide excision repair as a modifying factor of MGMT mediated innate chloroethylnitrosourea resistance in human tumor cell lines. Mol Pharmacol 1997; 52: 815-820.Google Scholar
19. Tano, K, Shiota, S, Collier, J, et al. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for 06-alkylguanine. Proc Natl Acad Sci USA 1990; 87: 686-690.Google Scholar
20. Belanich, M, Ayi, TC, Li, BF, et al. Analysis of 06-methylguanine- DNA methyltransferase in individual human cells by quantitative immunofluorescence microscopy. Oncol Res 1994; 6: 129-137.Google Scholar
21. Citron, M, White, A, Decker, R, et al. O6-methylguanine-DNA methyltransferase in human brain tumors detected by activity assay and monoclonal antibodies. Oncol Res 1995; 7: 49-55.Google Scholar
22. Ayi, TC, Loh, KC, Ali, RB, et al. Intracellular localization of human DNA repair enzyme methylguanine-DNA methyltransferase by antibodies and its importance. Cancer Res 1992; 52: 6423-6430.Google Scholar
23. Marcantonio, D, Hollingshead, MG, Alley, MC, et al. SarCNU, a novel chloroethylnitrosourea analogue with enhanced antitumor activity against human glioma xenografts. Cancer Res 1997; 57: 3895-3898.Google Scholar
24. Phillips, PC. Antineoplastic drug resistance in brain tumors. Neurol Clin 1991; 9: 383-404.Google Scholar
25. Hayes, JD, Pulford, DJ. The glutathione s-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Rev Biochem Mol Biol 1995; 30: 445-600.Google Scholar
26. Tew, KD, Monks, A, Barone, L, et al. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute drug screening program. Mol Pharmacol 1996; 50: 149-159.Google Scholar
27. Matsumoto, T, Tani, E, Yamaura, I, et al. Effects of protein kinase C modulators on multidrug resistance in human glioma cells. Neurosurg 1995; 36: 565-571.Google Scholar
28. Nabors, MW, Griffin, CA, Zehnbauer, BA, et al. Multidrug resistance gene (MDR1) expression in human brain tumors. J Neurosurg 1991; 75: 941-946.Google Scholar
29. Anderson, BS, Sadeghi, T, Siciliano, MJ, et al. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol 1996; 38: 406-416.Google Scholar
30. Zeng-Rong, N, Paterson, J, Alpert, L, et al. Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res 1995; 55: 4760-4764.Google Scholar
31. Chen, Z-P, McQuillan, A, Mohr, G, et al. ERCC2 gene expression and chloroethylnitrosourea resistance in human glioma cell lines. Neurosurgery 1998; 42: 1112-1119.Google Scholar
32. Ma, L, Hoeijmakers, JHJ, van der Eb, AJ. Mammalian nucleotide excision repair. Biochim Biophys Acta 1995; 1242: 137-164.Google Scholar
33. Aboussekhra, A, Wood, RD. Repair of UV damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr Opin Genet Dev 1994; 4: 212-220.Google Scholar
34. Chu, G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem-1 994; 269: 787-790.Google Scholar
35. Dabholkar, M, Bostick-Bruton, F, Weber, C, et al. ERCC-1 and ERCC-2 expression in malignant tissues from ovarian cancer patients. J Natl Cancer Inst 1992; 84: 1512-1517.Google Scholar