Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:58:21.110Z Has data issue: false hasContentIssue false

Regional HmPAO SPECT and CT Measurements in the Diagnosis of Alzheimer's Disease

Published online by Cambridge University Press:  18 September 2015

A. Mattman
Affiliation:
Clinic for Alzheimer's Disease and Related Disorders, Vancouver Hospital and Health Sciences Center-UBC Site, Vancouver.
H. Feldman*
Affiliation:
Clinic for Alzheimer's Disease and Related Disorders, Division of Neurology, Department of Medicine, Vancouver Hospital and Health Sciences Center-UBC Site, Vancouver.
B. Forste
Affiliation:
Department of Radiology, Vancouver Hospital and Health Sciences Center-UBC Site, Vancouver.
D. Li
Affiliation:
Department of Radiology, Vancouver Hospital and Health Sciences Center-UBC Site, Vancouver.
I. Szasz
Affiliation:
Department of Nuclear Medicine, Vancouver Hospital and Health Sciences Center-UBC Site, Vancouver.
B.L. Beattie
Affiliation:
Clinic for Alzheimer's Disease and Related Disorders, Division of Geriatric Medicine, Department of Medicine, Vancouver Hospital and Health Sciences Center-UBC Site, Vancouver.
M. Schulzer
Affiliation:
Departments of Statistics and Medicine, Vancouver Hospital and Health Sciences Center, Vancouver.
*
Division of Neurology, Vancouver Hospital and HSC-UBC Site, S192-2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

This study investigated the hypothesis that the combination of regional CT brain atrophy measurements and semiquantitative SPECT regional blood flow ratios could produce a diagnostic test for Alzheimer's disease (AD) with an accuracy comparable to that achieved with the present clinical gold standard of the NINCDS-ADRDA criteria.

Methods:

Single proton emission computed tomography (SPECT) and CT head scans were performed on 122 subjects referred an UBC Alzheimer clinic and diagnosed as either ‘not demented’ (ND-37) or ‘possible/probable AD’ (AD-85) by the NINCDS-ADRDA criteria. Stepwise discriminant analysis (SDA) was performed on the bilateral SPECT regions of interest and compared to bilateral CT qualitative/quantitative assessment in the frontal, parietal and temporal lobes to determine which were most accurate at ND/AD distinction. Receiver operating curves (ROC) were then constructed for these variables individually and for their combined discriminant function.

Results:

The left temporal qualitative cortical atrophy score (CT) and left temporal perfusion ratio (SPECT) were selected in the SDA. The combined discriminant function was more specific at AD/ND distinction than either of CT or SPECT alone. The accuracy of AD/ND distinction with the combined discriminant function was below that achieved by clinical diagnosis according to the NINCDS-ADRDA criteria and was not significantly different from that achieved with SPECT or CT alone as defined by ROC curve analysis.

Conclusion:

The measurements of left temporal cortical atrophy and regional cerebral blood flow were most indicative of AD; however they lacked the sensitivity and specificity to recommend their use as a diagnostic test for AD.

Résumé:

RÉSUMÉ:Introduction et objectifs:

Dans cette étude nous évaluons l'hypothèse selon laquelle l'association de mesures de l'atrophie cérébrale régionale par CT scan et de rapports de débits sanguins régionaux obtenus par SPECT pourrait constituer un test diagnostique de la maladie d'Alzheimer (MA) d'une précision comparable à celle des critères de l'étalon or actuel, le NINCDS-ADRDA.

Méthodes:

122 patients référés à la clinique d'Alzheimer de l'Université de la Colombie-Britannique ont subi un scan cérébral par SPECT et par CT, et on les a classifiés comme non déments (ND-37) ou MA possible/probable (MA-85) selon les critères du NINCDS-ADRDA. Nous avons effectué une analyse factorielle discriminante pas à pas (ADP) sur les données des régions d'intérêt obtenues par SPECT bilatéral et nous l'avons comparée à l'évaluation qualitative/quantitative des lobes pariétaux et temporaux bilatéraux obtenue par CT afin de déterminer quelle méthode d'investigation était plus fiable pour distinguer les patients ND des MA. Des courbes ROC ont ensuite été générées individuellement pour ces variables et pour leur fonction discriminante combinée.

Résultats:

La cote d'atrophie corticale qualitative du lobe temporal gauche (CT) et le taux de perfusion du lobe temporal gauche (SPECT) ont été sélectionnés à l'ADP. La fonction discriminante combinée était plus spécifique pour distinguer la MA de la ND que le CT ou le SPECT seul. La précision de la distinction MA/ND au moyen de la fonction discriminante comtinée état inférieure à celle obtenue par le diagnostic clinique selon les critères du NINCDS-ADRDA et n'était pas signi-ficativement différente de celle obtenue par le SPECT ou le CT seul, selon l'analyse de courbe ROC.

Conclusions:

Les mesures de l'atrophie corticale du lobe temporal gauche et du débit sanguin cérébral régional étaient les meilleurs marqueurs de la MA; cependant, ils n'ont pas une sensibilité et une spécificité suffisante pour recommander leur utilisation comme épreuves diagnostiques de la MA.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1997

References

1. Foster, NL, Chase, TN, Mansi, L, Brooks, R, Fedio, P. Cortical abnormalities in Alzheimer’s disease. Ann Neurol 1984; 16: 649654.Google Scholar
2. Friedland, RP, Budinger, TF, Ganz, E et al. Regional cerebral metabolic alternations in dementia of the Alzheimer type: positron emission tomography with (18F)fluorodeoxyglucose. J Comput Assist Tomogr 1983; 7(4): 590598.CrossRefGoogle Scholar
3. Cutler, NR, Haxby, JV, Duara, R et al. Clinical history, brain metabolism, and neuropsychological function in Alzheimer’s disease. Ann Neurol 1985; 18: 298309.CrossRefGoogle ScholarPubMed
4. McGeer, PL, Kamo, H, Harrop, R, et al. Positron emission tomography in patients with clinically diagnosed Alzheimer’s disease. Can Med Assoc J 1986; 134: 597607.Google Scholar
5. Neary, D, Snowden, JS, Shields, RA, Burjan, AWI, Northen, B Single photon emission tomography using 99mTc-HM-PAO in the investigation of dementia. J Neurol Neurosurg Psychiatry 1987; 50: 11011109.Google Scholar
6. Gemmell, HG, Sharp, PF, Besson, JAO et al. Differential diagnosis in dementia using the cerebral blood flow agent 99mTc HM-PAO: a SPECT study. J Comput Assist Tomogr 1987; 11(3): 398402.Google Scholar
7. Perani, D, Di Piero, V, Vallar, G, Cappa, S, Messa, C. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer’s disease. J Nucl Med 1988; 29: 15071514.Google ScholarPubMed
8. Jagust, WJ, Budinger, TF, Reed, BR The diagnosis of dementia with single photon emission computed tomography. Arch Neurol 1987; 44: 258262.Google Scholar
9. Pearlson, GD, Harris, GJ, Powers, RE et al. Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 1992; 49(5): 402408.Google Scholar
10. Bonte, FJ, Ross, ED, Chehabi, HH, Devous, MD SPECT study of regional cerebral blood flow in Alzheimer disease. J Comput Assist Tomogr 1986; 10(4): 579583.Google Scholar
11. Johnson, KA, Mueller, ST, Walshe, TM, English, RJ, Holman, BL Cerebral perfusion imaging in Alzheimer’s disease. Use of single photon emission computed tomography and iofetamine hydrochloride I 123. Arch Neurol 1987; 44: 165168.Google Scholar
12. Pizzolato, G, Dam, M, Borsato, N, et al. [99mTc]-HM-PAO SPECT in Parkinson’s disease. J Cereb Blood Flow Metab 1988; 8: S101–S108.Google Scholar
13. Spampinato, U, Habert, MO, Mas, JL et al. (99mTc)-HM-PAO SPECT and cognitive impairment in Parkinson’s disease: a comparison with dementia of the Alzheimer type. J Neurol Neurosurg Psychiatry 1991; 54: 787792.CrossRefGoogle ScholarPubMed
14. Launes, J, Sulkava, R, Erkinjuntti, T et al. 99TcM-HMPAO SPECT in suspected dementia. Nucl Med Commun 1991; 12: 757765.Google Scholar
15. Duara, R, Grady, C, Haxby, J et al. Positron emission tomography in Alzheimer’s disease. Neurology 1986; 36: 879887.Google Scholar
16. Haxby, JV, Grady, CL, Duara, R, Cutler, NR, Rapoport, SI. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 1985; 5(2): 193200.Google Scholar
17. Haxby, JV, Grady, CL, Duara, R et al. Neocortical metabolic abnormalities precede non-memory cognitive defects in early Alzheimer’s type dementia. Arch Neurol 1986; 43: 882885.Google Scholar
18. O’Brien, JT, Eagger, S, Syed, GMS, Sahakian, BJ, Levy, R A study of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1992; 55: 11821187.CrossRefGoogle ScholarPubMed
19. Karbe, H, Kertesz, A, Davis, J et al. Quantification of functional deficit in Alzheimer’s disease using a computer–assisted mapping program for 99mTc-HMPAO SPECT. Neuroradiology 1994; 36: 16.CrossRefGoogle Scholar
20. Jobst, KA, Smith, AD, Barker, CS et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1992; 55(3): 190194.Google Scholar
21. Liu, HC, Liu, RS, Lin, KN et al. Single photon emission computed tomography using 99Tcm-HMPAO in Alzheimer’s disease. Nucl Med Commun 1992; 13: 535541.CrossRefGoogle ScholarPubMed
22. Claus, JJ, van Harskamp, F, Breteler, MMB et al. The diagnostic value of SPECT with Tc 99m HMPAO in Alzheimer’s disease: a population-based study. Neurology 1994; 44: 454461.Google Scholar
23. Hughes, CP, Gado, M CT and aging of the brain. Radiology 1981; 139: 391396.Google Scholar
24. LeMay, M, Stafford, JL, Sandor, T et al. Statistical assessment of perceptual CT scan ratings in patients with Alzheimer type dementia. J Comput Assist Tomogr 1986; 10(5): 802809.Google Scholar
25. Golomb, J, de Leon, MJ, Kluger, A et al. Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch Neurol 1993; 509: 967973.Google Scholar
26. Itoh, M, Hatazawa, J, Miyazawa, H et al. Stability of cerebral blood flow and oxygen metabolism during normal aging. Gerontology 1990; 36(1): 4348.Google Scholar
27. DeCarli, C, Kaye, JA, Horwitz, B, Rapoport, SI Critical analysis of the use of computer-assisted transverse axial tomography to study human brain in aging and dementia of the Alzheimer type. Neurology 1990; 40: 872883.Google Scholar
28. Willmer, J, Carruthers, A, Guzman, DA et al. The usefulness of CT scanning in diagnosing dementia of the Alzheimer type. Can J Neurol Sci 1993; 20: 210216.Google Scholar
29. de Leon, MJ, Ferris, SH, George, AE et al. Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 1983; 3(3): 391394.Google Scholar
30. Soininen, H, Reinikainen, KJ, Puranen, M, et al. Wide third ventricle correlates with low choline acetyltransferase activity of the neocortex in Alzheimer patients. Alzheimer Dis Assoc Disord 1993; 7(1): 3947.Google Scholar
31. Convit, A, de Leon, MJ, Golomb, J et al. Hippocampal atrophy in early Alzheimer’s disease: anatomic specificity and validation. Psychiatr Q 1993; 64(4): 371387.Google Scholar
32. Tanna, NK, Kohn, MI, Horwich, DN et al. Analysis of brain and cerebrospinal fluid volumes with MR imaging: impact on PET data correction for atrophy. Part II. Aging and Alzheimer dementia. Radiology 1991; 178(1): 123130.Google Scholar
33. Matsuzawa, T, Hishinuma, T, Matsui, H et al. Severe atrophy of amygdala and hippocampus in both Alzheimer’s disease and multi-infarct dementia. Sci Rep Res Inst Tohoku Univ 1990; 37(1–4): 2325.Google ScholarPubMed
34. de Leon, MJ, Golomb, J, George, AE et al. The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. Am J Neurolradiol 1993; 14(4): 897906.Google Scholar
35. Jobst, KA, Smith, AD, Szatmari, M et al. Detection in life of confirmed Alzheimer’s disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 1992; 340(8829): 11791183.Google Scholar
36. George, AE, de Leon, MJ, Stylopoulos, LA et al. CT diagnostic features of Alzheimer disease: importance of the choroidal/hippocampal fissure complex. Am J Neuroradiol 1990; 11: 101107.Google Scholar
37. Kido, DK, Caine, ED, LeMay, M et al. Temporal lobe atrophy in patients with Alzheimer disease: a CT study. Am J Neuroradiol 1989; 10: 551555.Google Scholar
38. Jobst, KA, Hindley, NJ, King, E, Smith, AD The Diagnosis of Alzheimer’s Disease: a Question of Image? J Clin Psychiatry 1994; 55(Suppl 11): 2231.Google Scholar
39. McKhann, G, Drachman, DA, Folstein, M et al. Clinical diagnosis of Alzheimer’s disease — Report of the the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939944.Google Scholar
40. American Psychiatric Association : Diagnostic and statistical manual of mental disorders (DSM III-R) , ed 3, Washington DC, American Psychiatric Association, 1987.Google Scholar
41. Crockett, D, Tuokko, H, Koch, W, Parks, R The assessment of everyday functioning using the Present Functioning Questionnaire and the Functional Rating Scale in elderly samples. Clin Gerontol 1989; 8: 325.Google Scholar
42. Feldman, H, Schulzer, M, Wang, S, Tuokko, H, Beattie, BL The Functional Rating Scale in Alzheimer’s disease assessment: a longitudinal study. In: Iqbal, K, Mortimer, JA, Winblad, B, Wisniewski, HM, eds. Research Advances in Alzheimer’s Disease and Related Disorders. London: John Wiley & Sons, 1995: 235241.Google Scholar
43. Crook, TH, Larrabee, GJ, Youngjohn, JR Diagnosis and assessment of age-associated memory impairment. [Review]. Clin Neuropharm 1990; 13(Suppl 3): S81–S91.Google Scholar
44. Ebly, EM, Hogan, DB, Parhad, IM Cognitive Impairment in the nondemented elderly: results from the Canadian Study of Health and Aging. Arch Neurol 1995; 52: 612619.CrossRefGoogle ScholarPubMed
45. Hurwitz, TA, Ammann, W, Chu, D et al. Single photon emission computed tomography using 99m Tc-HM-PAO in the routine evaluation of Alzheimer’s disease. Can J Neurol Sci 1991; 18: 5962.Google Scholar
46. Gomori, JM, Steiner, I, Melamed, E, Cooper, G The assessment of changes in brain volume using combined linear measurements. A CT-scan study. Neuroradiology 1984; 26: 2124.Google Scholar
47. Brinkman, SD, Sarwar, M, Levin, HS, Morris, HH Quantitative indexes of computed tomography in dementia and normal aging. Radiology 1981; 138: 8992.Google Scholar
48. Soininen, H, Puranen, M, Riekkinen, PJ Computed tomography findings in senile dementia and normal aging. J Neurol Neurosurg Psychiatry 1995; 45: 5054.Google Scholar
49. Van den Bossche, B, Maes, M, Brussaard, C et al. Computed tomography of the brain in unipolar depression. J Affective Disord 1991; 21(1): 6774.Google Scholar
50. Aylward, EH, Karagiozis, H, Pearlson, G, Folstein, MF Suprasellar cistern measures as a reflection of dementia in Alzheimer’s disease but not Huntington’s disease. J Psychiatr Res 1991; 25(1–2): 3147.Google Scholar
51. Hirashima, Y, Shindo, K, Endo, S Measurement of the area of the anterior horn of the right lateral ventricle for the diagnosis of brain atrophy by CT. Neuroradiology 1983; 25: 2327.Google Scholar
52. Steiger, JH Tests for comparing elements of a correlation matrix. Psychol Bull 1980; 87(2): 245251.Google Scholar
53. Morris, JC, McKeel, DW, Fulling, K, Torack, RM, Berg, L Validation of Clinical Diagnostic Criteria for Alzheimer’s Disease. Ann Neurol 1988; 24: 1722.Google Scholar
54. Tierney, MC, Fisher, RH, Lewis, AJ et al. The NINCDS-ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer’s disease: a clinicopathologic study of 57 cases. Neurology 1988; 38: 359364.Google Scholar
55. Blacker, D, Albert, MS, Bassett, SS et al. Reliability and validity of NINCDS-ADRDA criteria for Alzheimer’s disease. Arch Neurol 1994; 51: 11981204.Google Scholar
56. Holman, BL, Johnson, KA, Gerada, B, Carvalho, PA, Satlin, A The scintigraphic appearance of Alzheimer’s disease: a prospective study using technetium-99m-HMPAO SPECT. J Nucl Med 1992; 33: 181185.Google Scholar
57. Jagust, WJ, Johnson, KA, Holman, BL SPECT Perfusion Imaging in the Diagnosis of Dementia. J Neuroimaging 1995; 5(Suppl 1): s45–s52.Google Scholar
58. Johnson, KA, Kijewski, MF, Becker, JA et al. Quantitative brain SPECT in Alzheimer’s disease and normal aging. J Nucl Med 1993; 34(11): 20442048.Google Scholar
59. Tuokko, H, Vernon-Wilkinson, RV, Weir, J, Beattie, BL Cued recall and the early identification of dementia. J Clin Exp Neuropsychol 1991; 13: 871879.Google Scholar
60. Petersen, RC, Smith, GE, Ivnik, RJ, Kokmen, E, Tangalos, EG Memory function in very early Alzheimer’s disease. Neurology 1994; 44: 867872.Google Scholar
61. Chawluk, JB, Dann, R, Alavi, A et al. The effect of focal cerebral atrophy in positron emission tomographic studies of aging and dementia. Nucl Med Biol 1990; 17: 797804.Google Scholar
62. Eberling, JL, Jagust, WJ, Reed, BR, Baker, MG Reduced temporal lobe blood flow in Alzheimer’s disease. Neurobiol Aging 1992; 13: 483491.Google Scholar
63. Brun, A, Englund, E Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549564.Google Scholar
64. Friedland, RP, Brun, A, Budinger, TF Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet 1985; 1: 228.Google Scholar