Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T07:49:44.220Z Has data issue: false hasContentIssue false

Regional Cerebral Blood Flow Statistical Patterns and Psychological Performance in Multi-Infarct Dementia and Alzheimer’s Disease

Published online by Cambridge University Press:  03 July 2018

Francisco I. Perez*
Affiliation:
Departments of Neurology and Psychiatry, Baylor College of Medicine, and the Baylor-Methodist Center for Cerebrovascular Research, Houston, Texas
Ninan T. Mathew
Affiliation:
Departments of Neurology and Psychiatry, Baylor College of Medicine, and the Baylor-Methodist Center for Cerebrovascular Research, Houston, Texas
David A. Stump
Affiliation:
Departments of Neurology and Psychiatry, Baylor College of Medicine, and the Baylor-Methodist Center for Cerebrovascular Research, Houston, Texas
John S. Mfyer
Affiliation:
Departments of Neurology and Psychiatry, Baylor College of Medicine, and the Baylor-Methodist Center for Cerebrovascular Research, Houston, Texas
*
Department of Neurology, Baylor College of Medicine, 1200 Moursund Avenue, Houston, Texas 77030 U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multivariate data analysis statistical procedures were applied to identify regional cerebral blood flow (rCBF) patterns in patients with multi-infarct dementia (M.I.D.) and Alzheimer’s disease (A.D.) when compared to a control group (C). A fronto-temporal-parietal pattern was identified for the A.D. group. The M.I.D. group demonstrated a predominant temporal-parietal pattern. A discriminant function analysis classified 96% of the A.D. and C. patients correctly. One hundred percent hit rate was obtained in discriminating between M.I.D. and C. Discrimination of A.D. and M.I.D. obtained 82% diagnostic accuracy. When the three groups were compared the hit rate was 93%. Mean rCBF and mean relative weight of the gray matter (Wg) differences were found when each dementia group was compared with C.M.I.D. and A.D. did not differ in mean rCBF but significant differences were found for Wg, with M.I.D. having greater reduction. The performance on standardized psychological tests of two independent samples of A.D. and M.I.D. were compared. The Memory Quotient from the Wechsler Memory Scale was consistently more impaired for the A.D. group. No correlation between degree of psychological impairment and rCBF or W g reduction was found.

Résumé

Résumé

Des procédures statistiques d’analyse de données par variances multiples furent appliquées pour identifier les types de rCBF chez les patients atteints de démences secondaires à de multiples infarcissements (M.I.D.) et dans la maladie d’Alzheimer (A.D.), comparés à un groupe contrôle (C). Un pattern fronto-temporo-pariétal fut identifié pour le groupe A.D. Le groupe M.I.D. démontrait un type temporo-pariétal prédominant. Une analyse de fonctions discriminantes classifiait correctement 96% des patients A.D. et C Cent pour cent de réussite fut obtenu en discriminant les groupes M.I.D. et C La discrimination des groupes A.D. et M.I.D. donnait 82% d’exactitude de diagnostic. Quand les trois groupes étaient comparés, le taux de succès était de 83%. Des différences furent obtenues quant au rCBF moyen et quant au poids moyen relatif de la substance grise (Wg) quand chaque groupe de démence fut comparé au groupe contrôle. Les groupes M.I.D. et A.D. ne différaient pas en ce qui concerne le rCBF moyen mais des différences significatives furent trouvées pour le Wg, le groupe M.I.D. ayant la plus grande réduction. La performance aux tests psychologiques standardisés de deux groupes A.D. et M.I.D. indépendants fut comparée. Le quotient de mémoire mesuré par l’échelle de mémoire de Wechster fut constamment plus bas dans le groupe A.D. Nous n’avons trouvé aucune corrélation entre le degré d’ altération psychologique et la réduction de rCBF ou de Wg

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1977

References

Baer, P. E., Mathew, N. T. and Faibish, G. M. (1976). Correlates of hemispheric and regional cerebral blood flow in dementia and cerebral vascular disease. In Meyer, J. S., Lechner, H., Reivich, M., and Eichhorn, O. (Eds) Cerebral Vascular Disease. 7th International Conference Salzburg, 1974. Stuttgart: Georg Thieme. (In press)Google Scholar
Bower, H. M., Andrews, J. T., and Pope, T. A. (1970) Dementia and Cerebral Blood Flow. The Medical Journal of Australia, 207:211.Google Scholar
Cooley, W. W and Lohnes, P. R. (1971). Multivariate data analysis. New York: John Wiley and Sons, Inc. Google Scholar
Hachinski, V. C. Lassen, N. A., and Marshall, J. (1974). Multi-infarct dementia — a cause of mental deterioration in the elderly. Lancet, 2: 207209 Google Scholar
Hachinski, V. C. Iliff, L. D., Zilha, E., DuBoulay, G. H., McAllister, V. L., Marshall, J., Russell, R. W., and Symon, L. (1975). Cerebral blood flow in dementia. Archives of Neurology. 32: 632637 Google Scholar
Heiss, W. D., Prosenz, P., and Roszuczky, A. (1972). Technical considerations in the use of a gamma camera, 1600 channel analyzer system for the measurement of regional cerebral blood flow. Journal of Nuclear Medicine, 13: 534543.Google Scholar
Heiss, W. D. (1973). Drug effects on regional cerebral blood flow in focal cerebrovascular disease. Journal of Neurological Science, 19: 461482.Google Scholar
Ingvar, D. H. (1970). Cerebral blood flow in organic dementia. In Meyer, J. S., M., Rievich, Lechner, H., and Eichhorn, O. (Eds.) Research on the Cerebral Circulation. 4th International Salzburg Conference, Springfield, Illinois: Charles C. Thomas.Google Scholar
Kannell, W. B., Blaisdell, F. W., Gifford, R., Hass, W. J. McDowell, F., Meyer, J. S., Millikan, C. H., Rentz, L. E., and Seltser, E. (1971). Risk factors in stroke due to cerebral infarction. Stroke, 2: 423428.CrossRefGoogle Scholar
Karp, H. (1974). Dementias in adults. In Baker, A. B. and Baker, L. H. (Eds.) Clinical Neurology, Vol. 2, Chapter 27, Hagerstown, Maryland, Harper & Row Publishers.Google Scholar
Kety, S. S. (1956). Human cerebral blood flow and oxygen consumption as related to aging. Research Publication of the Association of Nervous and Mental Disorders, 31: 35.Google Scholar
Klassen, A. C. Kush, G. S., Resch, J. A., Loker, M. D., and Meyer, M. W. (1971). Gamma camera evaluation of cerebral circulation using inhalation and intracarotid injection of 133Xenon. In Ross Russel, R. W. (Ed.) Brain and Blood Flow. London, Pitman, 4247 Google Scholar
Lassen, N. A., Munck, O., and Tottey, E. R. (1957). Mental function and cerebral oxygen consumption in organic dementia. Archives of Neurology and Psychiatry, 77: 126.Google Scholar
Lassen, N. A., Feinberg, I., and Lane, M. H. (1960) Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. Journal of Clinical Investigations, 39: 491.Google Scholar
Lassen, N. A. and Ingvar, D. (1961). The blood flow of cerebral cortex determined by radioactive Krypton. Experientia 17: 4243.CrossRefGoogle ScholarPubMed
Mathew, N. T., Meyer, J. S., Bell, R. L., Johnson, P. C. and Neblett, C. R. (1972). Regional cerebral blood flow and blood volume measured with the gamma camera. Neuroradiology, 4: 133140.Google Scholar
Mathew, N. T., Meyer, J. S., and Hartmann, A. (1974). Diagnosis and Treatment of factors complicating sub-arachnoid hemorrhage. Neuroradiology, 6: 237245.Google Scholar
Meyer, J. S., Welch, K. M. A., Perez, F. I., Mathew, N. T., Rivera, V. M., Gedye, J. L., Hrastnik, F., Miyakawa, Y., Achar, V., Achari, A. N., and Dodson, R. F. (June 5-6, 1975). Neurotransmitter failure in cerebral infarction, dementia and the aging brain. Paper presented at the symposium on “The Neurobiology of AgingNew York University Medical Center.Google Scholar
Milner, B. (1967) Brain mechanisms suggested by studies of the temporal lobes. In Darley, F. L. (Ed) Brain Mechanisms Underlying Speech and Language. New York: Grune and Stratton.Google Scholar
Obrist, W. D., Chivian, E., Cronquist, S., and Ingvar, D. H. (1970). Regional cerebral blood flow in senile and presenile dementia. Neurology, 20: 315322.Google Scholar
Perez, F. I., Rivera, V. M., Meyer, J. S., Gay, J. R. A., Taylor, R. L. and Mathew, N. T. (1975a). Analysis of intellectual and cognitive performance in patients with multi-infarct dementia, verteb-robasilar insufficiency with dementia, and Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 38: 533540.Google Scholar
Perez, F. I., Gay, J. R. A., and Taylor, R. L. (1975b) WAIS performance of neurologically impaired aged. Psychological Reports, 37: 10431047.CrossRefGoogle ScholarPubMed
Perez, F. L. Gay, J. R. A., Taylor, R. L., and Rivera, V. M. (1975c) Patterns of memory performance in the neurologically impaired aged. The Canadian Journal of Neurological Sciences, 2: 347355.Google Scholar
Perez, F. I., Mathew, N. T., Rivera, V. M., and Meyer, J. S. (1975d). New approach to the differential diagnosis of organic dementias. Paper presented at the IV Pan American Congress of Neurology, Mexico City, October 12-17 (Abstract page No. 69).Google Scholar
Prosenz, P., Heiss, W. D., Tschabitscher, H., and Ehrmann, L. (1974). The value of regional cerebral blood flow measurement compared to angiography in the assessment of obstructive neck vessel disease. Stroke, 5: 1931.CrossRefGoogle ScholarPubMed
Roth, M., Tomlinson, B. E., and Blessed, G. (1966). Correlation between scores for dementia and counts of “senile plaques” in cerebral gray matter of elderly subjects. Nature, 209: 109110.Google Scholar
Simard, D., Olessen, J., Paulson, O. B., Lassen, N. A., and Skinko, E. (1971). Regional cerebral blood flow and its regulation in dementia. Brain, 94: 273288.Google Scholar
Sokoloff, L. (1953). Cerebral hemodynamics in cerebral arteriosclerosis. Journal of Gerontology. 8: 137143.Google Scholar
Terry, R. D., and Wisniewski, H. (1970). The ulstructure of the neurofibrillary tangle and the senile plaque. In Wolstenholme, G. F. W., and O’Connor, M. (eds.) Alzheimer’s Disease and Related Conditions. London: J. and A Churchill.Google Scholar
Tomlinson, B. E., Blessed, G., and Roth, M. (1970). Observations of the brains of demented old people. Journal of Neurological Science, 11: 205243.Google Scholar
Ward, J. and Jennings, E. (1973). Introduction to Linear Models. Englewood Cliff, New Jersey: Prentice Hall.Google Scholar