Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T11:51:06.513Z Has data issue: false hasContentIssue false

Regional Accumulation of 14C-zonisamide in Rat Brain during Kainic Acid-induced Limbic Seizures

Published online by Cambridge University Press:  02 December 2014

Koichi Akaike
Affiliation:
Department of Neuropsychiatry, University of Kagoshima, Faculty of Medicine, Kagoshima, Japan
Shigeya Tanaka
Affiliation:
Department of Neuropsychiatry, University of Kagoshima, Faculty of Medicine, Kagoshima, Japan
Hideshi Tojo
Affiliation:
Department of Neuropsychiatry, University of Kagoshima, Faculty of Medicine, Kagoshima, Japan
Shin-ichiro Fukumoto
Affiliation:
Department of Neuropsychiatry, University of Kagoshima, Faculty of Medicine, Kagoshima, Japan
Morikuni Takigawa
Affiliation:
Department of Neuropsychiatry, University of Kagoshima, Faculty of Medicine, Kagoshima, Japan
Shin-ichi Imamura
Affiliation:
Department of Neurosurgery, University of Kagoshima, Faculty of Medicine, Kagoshima, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Zonisamide (ZNS) is an antiepileptic drug developed in Japan. Various experimental studies have investigated the effects of ZNS. However, the mechanism of action of ZNS against limbic seizures and secondary generalization is not well-known. We studied ictal regional accumulation of ZNS in the rat brain during kainic acid (KA)-induced limbic status epilepticus.

Methods:

Fourteen male Wistar rats underwent a stereotactic operation. For recording the electroencephalogram (EEG), electrodes were placed in the left amygdala (LA), left dorsal hippocampus, and over the left sensorimotor cortex. For microinjection, a stainless steel cannula was also inserted into the LA. Seven days after surgery, rats were anesthetized and a catheter was inserted into the femoral vein. The animals were immobilized and allowed to recover from anesthesia for at least two hours. In eight rats, 1.0μL (1.0μg) of KA was injected into the LA, and 1.0 μL of phosphate buffer solution was injected into the LA in six control rats. Sixty minutes after injection, 14C-ZNS was administered intravenously, and an autoradiographic study was done.

Results:

During limbic status epilepticus, only seizures in the sensorimotor cortex were markedly attenuated a few minutes after 14C-ZNS administration. Additionally, high uptake of 14C-ZNS was noted ipsilaterally in the sensorimotor cortex, parietal cortex and thalamus (lateral portion). In control rats, no EEG change was seen, and distribution of 14C-ZNS was rather homogeneous.

Conclusion:

These results suggested that ZNS suppresses secondary generalization of limbic seizures by a direct effect on the cerebral cortex.

Résumé:

RÉSUMÉ:

Accumulation régionale de zonisamide-C" dans le cerveau de rat pendant des convulsions limbiques induites par l'acide kaïque.

Introduction:

Le zonisamide (ZNS) est un antiépileptique qui a été développé au Japon. Plusieurs études expérimentales ont investigué les effets du ZNS, mais le mécanisme d'action du ZNS contre les convulsions limbiques et la généralisation secondaire demeure mal connu. Nous avons étudié l'accumulation ictale régionale de ZNS dans le cerveau de rats chez qui on a induit un status épilepticus au moyen de l'acide kaïque (AK).

Méthodes:

Quatorze rats Wistar mâles ont subi une chirurgie stéréotaxique. Pour l'enregistrement électroencéphalographique (ÉEG), les électrodes ont été placées dans l'amygdale gauche (AG), l'hippocampe dorsal gauche et le cortex sensitivomoteur gauche. Une canule d'acier inoxydable a été insérée dans l'AG. Sept jours après l'intervention, les rats ont été anesthésiés et un cathéter a été inséré dans la veine fémorale. Les animaux ont été immobilisés et on les a laissés se remettre de l'anesthésie pendant au moins deux heures. Chez huit rats, 1.0 μL (1.0 μg) d'AK a été injecté dans l'AG et 1.0 μL de solution tampon au phosphate a été injecté dans l'AG chez six rats contrôles. Soixante minutes après l'injection, le ZNS-C4 a été administré par voie intraveineuse et une étude autoradiographique a été effectuée.

Résultats:

Pendant le status épileptius limbique, seules les crises situées dans le cortex sensitivomoteur ont été atténuées de façon importante quelques minutes après l'administration du ZNS-C14. De plus, une captation élevée du ZNS-C-4 a été notée dans le cortex sensitivomoteur, le cortex pariétal et le thalamus (portion latérale) ipsilatéral. Chez les rats contrôles, aucun changement ÉEG n'a été observé et la distribution du ZNS-C-4 était plutôt homogène.

Conclusions:

Ces résultats suggèrent que le ZNS supprime la généralisation secondaire des crises convulsives limbiques par un effet direct sur le cortex cérébral.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2001

References

1. Seino, M, Okuma, T, Miyasaka, M. Efficacy evaluation of AD-810 (zonisamide). Double-blind study comparing with carbamazepine. Clin Exp Med 1988; 144: 275291.Google Scholar
2. Yagi, K, Seino, M. Methodological requirements for clinical trials in refractory epilepsies – our experience with zonisamide. Prog Neuropsychopharmacol Biol Psychiat 1992; 16: 7985.Google Scholar
3. Hamada, K, Ishida, S, Yagi, K, Seino, M. Anticonvulsant effects of zonisamide on amygdaloid kindling in rats. Neurosciences 1990; 16: 407412.Google Scholar
4. Ito, T, Hori, M, Masuda, Y, Yoshida, K, Shimizu, M. 3-sulfamoylmethyl-1, 2-benzisoxazole, a new type of anticonvulsant drug. Electroencephalographic profile. Arzneimitterforschung 1980; 30: 603609.Google Scholar
5. Kamei, C, Oka, M, Masuda, Y, Yoshida, K, Shimizu, M. Effect of 3-sulfamoylmethyl-1, 2-benzisoxazole (AD-810) and some antiepileptics on the kindled seizures in the neocortex, hippocampus and amygdala in rats. Arch Int Pharmacodyn 1981;249: 164176.Google Scholar
6. Masuda, Y, Karasawa, T, Shiraishi, Y, et al. 3-sulfamoylmethyl-1, 2-benzisoxazole, a new type of anticonvulsant drug. Pharmacological profile. Arzneim-Forsch 1980; 30: 477483.Google Scholar
7. Takano, K, Tanaka, T, Fujita, T, Nakai, H, Yonemasu, Y. Zonisamide: electrophysiological and metabolic changes in kainic acid-induced limbic seizure in rats. Epilepsia 1995; 36: 644648.CrossRefGoogle ScholarPubMed
8. Imamur, S, Tanaka, S, Tojo, H, et al. Kainic acid-induced perirhinal cortical seizures in rats. Brain Res 1998; 800: 323327.CrossRefGoogle Scholar
9. Tanaka, S, Kondo, S, Tanaka, T, Yonemasu, Y. Long-term observation of rats after unilateral intra-amygdaloid injection of kainic acid. Brain Res 1988; 463: 163167.Google Scholar
10. Tanaka, S, Tanaka, T, Fujita, F, et al. Changes in blood-brain barrier function in kainic acid-induced limbic status epilepticus in rats. (Submitted for publication).Google Scholar
11. Tanaka, S, Sako, K, Tanaka, T, Nishihara, I, Yonemasu, Y. Uncoupling of local blood flow and metabolism in the hippocampal CA3 in kainic acid-induced limbic seizure status. Neuroscience 1990; 36:339348.CrossRefGoogle ScholarPubMed
12. Tanaka, T, Kaijima, M, Daita, G, et al. Electroclinical features of kainic acid-induced status epilepticus in freely moving cats. Microinjection into the dorsal hippocampus. Electroenceph Clin Neurophysiol 1982; 54: 288300.Google Scholar
13. Tanaka, T, Kaijima, M, Yonemasu, Y, Cepeda, C. Spontaneous secondarily generalized seizures induced by a single microinjection of kainic acid into unilateral amygdala in cats. Electroenceph Clin Neurophysiol 1985; 61: 422429.Google Scholar
14. Tanaka, T, Tanaka, S, Fujita, T, et al. Experimental complex partial seizures induced by a microinjection of kainic acid into limbic structures. Prog Neurobiol 1992; 38: 317334.Google Scholar
15. Paxinos, G. The Rat Nervous System. Sydney: Academic Press. 1985.Google Scholar
16. Pellegrino, LJ, Pellegrino, AS, Cushman, AJ. A Stereotaxic Atlas of the Rat Brain. New York: Plenum. 1979.Google Scholar
17. Matsumoto, K, Miyazaki, H, Fujii, T, et al. Absorption, distribution and excretion of 3-(sulfamoyl[14C] methyl)-1,2-benzisoxazole (AD-810) in rats, dogs and monkeys and of AD-810 in men.. Pharmacological profile Arzneim-Forsch, 1983; 33: 961968.Google Scholar
18. Geary, WA II, Wooten, GF, Perlin, JB, Lothman, EW. In vitro and in vivo distribution and binding of phenytoin to rat brain. J Pharmacol Exp Ther 1987; 241: 704713.Google ScholarPubMed
19. Mesdjian, E, Ciesielski, L, Valli, M, et al. Sodium valproate: kinetic profile and effects on GABA levels in various brain areas of the rat. Prog Neuropsychopharmacol Biol Psychiat 1982; 6: 223233.Google Scholar
20. Mimaki, T, Tanoue, H, Matsunaga, Y, Miyazaki, H, Mino, M. Regional distribution of 14C-zonisamide in rat brain. Epilepsy Res 1994; 17: 233236.Google Scholar
21. Pantarotto, C, Crunelli, V, Lanzoni, J, Frigerio, A, Quattrone, A. Quantitative determination of carbamazepine and carbamaze-pine-10,11- epoxide in rat brain areas by multiple ion detection mass fragmentography. Ann Biochem 1979; 93: 115123.Google Scholar