Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T10:50:33.287Z Has data issue: false hasContentIssue false

Pyruvate Metabolism in Friedreich's Ataxia

Published online by Cambridge University Press:  18 September 2015

A. Barbea*
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
R.F. Butterworth
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
T. Ngo
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
G. Breton
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
S. Melançon
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
D. Shapcott
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
G. Geoffroy
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
B. Lemieux
Affiliation:
Clinical Research Institute of Montreal; the Hôpital Ste-Justine de Montreal; The Centre Hospitalier Universitaire de Sherbrooke; Hopital Hôtel-Dieu de Montreal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal H2W 1R7, Quebec, Canada
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Friedreich's ataxia patients show evidence of an abnormally elevated and prolonged response of pyruvate and lactate to a glucose load, with normal fasting levels. However, there is a bimodal distribution of this response with high and low pyruvate responders. This trait appears to be determined genetically, However, although in vivo tests suggest low oxidation of pyruvate, we were unable to confirm any in vitro impairment of each of the components of the pyruvate dehydrogenase (PDH) complex. We conclude that the defect is in the metabolic regulation of PDH, probably at the E3 (lipoamide dehydrogenase) step.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1976

References

REFERENCES

Barbeau, A. (1975). Preliminary studies on pyruvate metabolism in Friedreich’s ataxia. Trans, of Am. Neurol. Assoc., 100, 164165.Google ScholarPubMed
Blass, J.P., Avigan, J., and Urilen-Dorf, B.S. (1970). A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J. Clin. Invest., 49, 423432.CrossRefGoogle Scholar
Blass, J.P., Avigan, J., and Uhlen-Dorf, B.S. (1970). A defect in pyruvate patient with pyruvate decarboxylase deficiency Arch. Neurol, 25, 449460.Google Scholar
Blass, J.P., Schulman, J.D., and Young, D.S. (1972). An inherited defect affecting the tricarboxylic acid cycle in a patient with congenital lactic acidosis. J. Clin. Invest., 51, 18451851.CrossRefGoogle Scholar
Blass, J.P., Kark, R.A.P., and Menon, N.K. (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s ataxia. New Engl. J. Med., 295, 6267.CrossRefGoogle ScholarPubMed
Collis, W.J., and Engel, W.K. (1968). Glucose metabolism in five neuromuscular disorders. Neurology, 18, 915525.CrossRefGoogle ScholarPubMed
Dancis, J., and Levitz, M. (1972). Abnormalities of branched-chain amino acid metabolism. In: The Metabolic Basis of Inherited Disease, 3rd Edition (Stanbury, J.B., Wyngaarden, J.B. and Fredrickson, D.S., eds.). McGraw-Hill, New York, pp. 426439.Google Scholar
Dreyfus, P.M., and Victor, M. (1961). Effects of thiamine deficiency on the central nervous system. Am. J. Clin. Nutr., 9, 414425.CrossRefGoogle ScholarPubMed
Dunn, H.G. and Dolman, C.L. (1969). Necrotizing encephalomyelopathy. Report of a case with relapsing polyneuropathy and hyperalaninemia and with manifestations ressembling Friedreich’s ataxia. Neurology (Minneap.), 19, 536550.CrossRefGoogle Scholar
Farrell, D.F., Clark, A.F., and Scott, C.R. (1975). Absence of pyruvate decarboxylase in man: a cause of congenital lactic acidosis. Science, 187, 10821084.CrossRefGoogle Scholar
Fredrickson, D.S., Gotto, A.M., and Levy, R.I. (1972). Familial Lipoprotein deficiency (αβ-lipoproteinemia, hypo-lipoproteinemia, and Tangier disease. In: The Metabolic Basis of Inherited Disease, 3rd edition, (Stanbury, J.B., Wyngaarden, J.B., and Fredrickson, D.S., eds). McGraw-Hill, New York, pp. 498530.Google Scholar
Hewer, R.L., and Robinson, N. (1968). Diabetes mellitus in Friedreich’s ataxia. J. Neurol. Neurosurg. Psychiat., 31, 226231.CrossRefGoogle ScholarPubMed
Jepson, J.B. (1972). Hartnup disease. In:The Metabolic Basis of Inherited Disease, 3rd edition, (Stanbury, J.B.,Wyngaarden, J.B. and Fredrickson, D.S., eds). McGraw Hill, New York, pp. 14861503.Google Scholar
Johnson, J.L. (1975). Compartmentation of (U-14C) proline metabolism in the dorsal root ganglion. Contrasts with the ventral spinal cord gray and cerebral cortex. Brain Res., 96, 192196.CrossRefGoogle ScholarPubMed
Johnson, J.L. (1976). A comparative analysis of compartmentation of metabolism in the dorsal root ganglion and ventral spinal cord gray using (U-14C) glucose, (2-14C) glucose, (6-14C) glucose, (3,4-l4C) glucose, NaH14C03, and (2-l4C) pyruvate. Brain Res., 101, 523532.CrossRefGoogle Scholar
Joiner, C.L., McArdle, B., and Thompson, R.H.S. (1950). Blood pyruvate estimations in diagnosis and treatment of polyneuritis. Brain, 73, 431452.CrossRefGoogle ScholarPubMed
Kark, R.A.P., Blass, J.P., and Engel, W.K. (1974). Pyruvate oxidation in neuromuscular diseases – Evidence of a genetic defect in two families with the clinical syndrome of Friedreich’s ataxia. Neurology, 24, 964971.CrossRefGoogle ScholarPubMed
Londsdale, D., Faulkner, W.R., Price, J.W., and Smeby, R.R. (1969). Intermittent cerebellar ataxia associated with hyperpyruvic acidemia, hyperalaninemia and hyperalaninuria. Pediatrics, 43, 10251034.CrossRefGoogle Scholar
Meister, A. (1974). The γ-glutamyl cycle: diseases associated with specific enzyme deficiencies. Ann. Intern. Med., 81, 247253.CrossRefGoogle ScholarPubMed
Menon, N.K., and Kark, R.A.P. (1976). Inhibition of oxidation in chronic alkyl-mercury poisoning. Proc. Ann. Soc. Neurochem., 7, 151.Google Scholar
Pelley, J.W., Gwynne, H.L., Tracy, C.L., and Frank, F.H. (1976). Lipoamide dehydrogenase in serum: a preliminary report. Clinical Chemistry, 22, 275277.CrossRefGoogle ScholarPubMed
Pilz, H. (1969). Clinical morphological and biochemical aspects of sphingolipidoses. Neuropaediatric, 1, 427.Google Scholar
Podolsky, S., and Sheremata, W.A. (1970). Insulin-dependent diabetes mellitus and Friedreich’s ataxia in siblings. Metabolism, 19 555561.CrossRefGoogle ScholarPubMed
Reed, L.J., and Cox, D.J. (1966). Mac-romolecular organization of enzyme systems. Ann. Rev. Biochem., 35, 5784.CrossRefGoogle Scholar
Reed, L.J. (1974). Multienzyme complexes. Accounts of Chemical Research, 7, 40.CrossRefGoogle Scholar
Reynolds, S.F., and Blass, J.P. (1976). A possible mechanism for selective cerebellar damage in partial pyruvate dehydrogenase deficiency. Neurology, 26, 625628.CrossRefGoogle ScholarPubMed
Shahani, B., Davies-Jones, G.A.B., and Russel, W.R. (1971). Motor neurone disease – Further evidence for an abnormality of nerve metabolism. J. Neurol. Neurosurg. Psychiat., 34, 185191.CrossRefGoogle ScholarPubMed
Steinberg, D. (1972). Phytanic acid storage disease (Refsum’s disease). In: The Metabolic Basis of Inherited Disease, 3rd Edition, Stanbury, J.B., Wyngaarden, J.B. and Fredrickson, D.S., eds), McGraw-Hill, New York, pp. 833853.Google Scholar
Stròmme, J.H., Borud, O., and Moe, P.J. (1976). Fatal lactic acidosis in a newborn attributable to a congenital defect of pyruvate dehydrogenase. Pediat. Res, 10, 6066.CrossRefGoogle Scholar
Thompson, R.H.S., and Whittaker, V.P. (1947). Antidotal activity of British Anti-lewisite against compounds of antimony, gold and mercury. Biochem. J., 41, 342346.CrossRefGoogle ScholarPubMed
Thoren, C. (1962). Diabetes mellitus in Friedreich’s ataxia. Acta Paediat. (Uppsala), 51, suppl. 135, 239247.CrossRefGoogle Scholar
Wenger, D.A., Goodman, S.I., and Myers, G.G. (1974). galactosidase deficiency in young adults. Lancet, 2, 13191321.CrossRefGoogle ScholarPubMed
Wieland, O., Helmreich, E., and Holzer, H. (Eds.). (1972). Metabolic interconversion of enzymes. Springer Verlag, Heidelberg.Google Scholar