Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T14:02:05.955Z Has data issue: false hasContentIssue false

Pyruvate Dehydrogenase Activity in the Liver, Brain and Adipose-Tissue of Lipid-Deprived Developing Rats. Effect of Minute Amounts of Polyunsaturated Fatty Acids

Published online by Cambridge University Press:  18 September 2015

C. Loriette
Affiliation:
Laboratoire Biologie Cellulaire Groupe Nutrition Cellulaire du C.N.R.S. Université de Paris
M. Launay
Affiliation:
Laboratoire Biologie Cellulaire Groupe Nutrition Cellulaire du C.N.R.S. Université de Paris
D. Lapous
Affiliation:
Laboratoire Biologie Cellulaire Groupe Nutrition Cellulaire du C.N.R.S. Université de Paris
J. Raulin
Affiliation:
Laboratoire Biologie Cellulaire Groupe Nutrition Cellulaire du C.N.R.S. Université de Paris
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present experiment was carried out using the following diets: FF, fat-free, and LP the same diet with 0.7% sunflower oil - given to the progeny of females kept on the FF diet since the mating. After 10 mM Mg2+ activation of the PDH phosphatase, the rate of [1-14C] pyruvate decarboxylation into acetyl-CoA ester units was determined in the liver, brain and adipose-tissue of the pair-fed developing rats. Results: In the male progeny, pyruvate dehydrogenase (PDH) activity was higher (61%) in the LP group livers than in the FF group livers, at the end of the 13 week experiment. Such a difference was not observed in the two group brains up to the 91 days postweaning, but was even larger (94%) between adipose-tissues of the LP and FF groups. In the female progeny kept 12 weeks on the diets, PDH activity in the LP group tissues was also higher than in the FF group tissues: 63% in the liver, 43% in adipose-tissues, and less than 10% in the brain. Therefore, a minute amount of lipids high in linoleic acid appeared to increase PDH activity, and especially in the liver and adipose-tissues of animals kept on a strictly fat-free diet. This stimulation of the PDH activity seems closely related to the phospholipid rehabilitation in the tissues (decrease in the trienoic: tetraenoic acid ratio values).

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1982

References

REFERENCES

Alfin-Slater, R.B. & Bernick, S. (1958). Changes in tissue lipids and tissue histology resulting from essential fatty acid deficiency in rats. Amer. J. Clin. Nulr., 6, 613624.CrossRefGoogle ScholarPubMed
Alfin-Slater, R.B. & Aftergood, L. (1976). Essential fatty acids. Recent developments, in: Medicinal Chemistry. Lipid Pharmacology, Vol. 2-II, (Paoletti, R. & Glueck, C.J., eds) pp. 4382, Acad. Press, N.Y.Google Scholar
Bailey, E., Taylor, C.B. & Bartley, W. (1967). Turnover of mitochondrial components of normal and essential fatty acid-deficient rats. Biochem. J., 104, 10261032.CrossRefGoogle ScholarPubMed
Barbeau, A. (1975). Preliminary studies on pyruvate metabolism in Friedreich’s ataxia. Trans. Am. Neurol. Ass., 100, 164165.Google ScholarPubMed
Barbeau, A. (1978). Emerging treatments: replacement therapy with choline or lecithin in neurological diseases. Can. J. Neurol. Sci., 5, 157160.CrossRefGoogle ScholarPubMed
Barbeau, A. (1980). Friedreich’s ataxia 1980. An overview of the physiopathology. Can. J. Neurol. Sci., 7, 455468.CrossRefGoogle ScholarPubMed
Blass, J.P., Kark, R.A.P. & Menon, N.K. (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s ataxia. New Engl. J. Med., 295, 6261.CrossRefGoogle ScholarPubMed
Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911917.CrossRefGoogle ScholarPubMed
Carreau, J.P., Loriette, C., Counis, P. & Ketevi, P. (1972). Démasquage présumé des récepteurs de la noradrenaline par enrichissement en acide linoléique des phospholipides membranaires de la cellule adipeuse. I. Activité lipase. Biochim. biophys. Acta, 280, 440443.CrossRefGoogle Scholar
Carreau, J.P., Lapous, D. & Raulin, J. (1975). Un dérivé vraisemblablement essentiel de l’acide linoléique: l’acide lipoïque, coenzyme universel de l’oxydation des acides alpha-cétoniques. C.R. Acad., Paris, 281, 941944.Google Scholar
Carreau, J.P., Lapous, D. & Raulin, J. (1977). Signification des acides gras essentiels dans le métabolisme intermédiaire. Hypothèses sur la synthèse de l’acide lipoïque. Biochimie, 59, 487496.CrossRefGoogle Scholar
Carreau, J.P. & Dubacq, J.P. (1978). Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J. Chromato., 151, 384390.CrossRefGoogle Scholar
Carreau, J.P. (1979). Biosynthesis of lipoic acid via unsaturated fatty acids, in: Meth. Enzymol, vol 62, Vitamins & Coenzymes, Part D (Mccormick, D.B. & Wright, L.D., eds), pp. 152158, Acad. Press, N.Y.Google Scholar
Caster, W.O., Andrews, J.W. Jr., Mohrhauer, H. & Holman, R.T. (1976). Effect of essential and nonessential fatty acids in complex mixture on fatty acid composition of liver lipids. J. Nutr., 106, 18091816.CrossRefGoogle ScholarPubMed
Coore, H.G., Denton, R.M., Martin, B.R. & Randle, P.J. (1971). Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem. J., 125, 115127.CrossRefGoogle ScholarPubMed
Counis, R. (1973). Dèmasquage présumé des récepteurs de la noradrenaline par enrichissement en acide linoléique des phospholipides membranaires de la cellule adipeuse. II. Activités adenylcyclase et phosphodiesterase. Biochim. biophys. Acta, 306, 391395.CrossRefGoogle Scholar
Counis, R. & Jutisz, M. (1977). Temperature dependence of adenylate cyclase activity from rat white adipocytes. Molec. Cell Endocrinol., 7, 313324.CrossRefGoogle ScholarPubMed
Cunningham, C.C. & Hager, L.P. (1971). Crystalline pyruvate oxidase from E. coli. Phospholipid as an allosteric effector for the enzyme. J. Biol. Chem., 246, 15831589.CrossRefGoogle Scholar
Dennis, S.C., Debuysere, M., Scholz, R. & Olson, M.S. (1978). Studies on the relationship between ketogenesis and pyruvate oxidation in isolated rat liver mitochondria. J. Biol. Chem., 253, 22292237.CrossRefGoogle ScholarPubMed
Denton, R.M., Randle, P.J., Bridges, B.J., Cooper, R.H., Kerbey, A.L.. Pask, H.T., Severson, D.L., Stansbie, D. & Whitehouse, S. (1975). Regulation of mammalian pyruvate dehydrogenase. Molec. Cell. Biochem., 9, 2753.CrossRefGoogle ScholarPubMed
Dhopeschwarkar, G.C., Subramanian, C., Gan-Elepano, M. & Mead, J.F. (1981). Lack of vitamin-E in the diet leads to essential fatty acid (EFA) deficiency. 12th Int. Congr. Nutrition, San Diego, CA, Abstract 782.Google Scholar
Engelhard, V.H., Esko, J.D., Storm, D.R. & Glaser, M. (1976). Modification of adenylate cyclase activity in LM cells by manipulation of the membrane phospholipid composition in vivo. Proc. Natl. Acad. Sci. 73, 44824486.CrossRefGoogle ScholarPubMed
Fleischer, S., Mcintyre, J.D., Stoffel, W. & Tunggal, B.D. (1979). Carbon-13 nuclear magnetic resonance studies of the interaction of lecithin with purified D – beta- hydroxybutyrate apode-hydrogenase, a lipid-requiring enzyme. Biochemistry, 18, 24202429.CrossRefGoogle ScholarPubMed
Galli, C, White, H.B. Jr. & Paoletti, R. (1971). Lipid alterations and their reversion in the central nervous system of growing rats deficient in essential fatty acids. Lipids, 6, 378387.CrossRefGoogle ScholarPubMed
Griffiths, D.E. (1976). Studies of energylinked reactions. Net synthesis of adenosine triphosphate in isolated adenosine triphosphate synthase preparations: a role for lipoic acid and unsaturated fatty acids. Biochem. J., 160, 809812.CrossRefGoogle ScholarPubMed
Griffiths, D.E. & Hyams, R.L. (1977). Oxidative phosphorylation: a role for lipoic acid and unsaturated fatty acids. Biochem. Soc. Trans., 5, 207208.CrossRefGoogle Scholar
Huang, Y.S., Marcel, Y.L., Vezina, C.Barbeau, A. & Davignon, J. (1980). Lecithin: cholesterol acyltransferase activity and fatty acid composition of erythrocyte phospholipids in Friedreich’s ataxia. Can. J. Neurol. Sci., 7, 429434.CrossRefGoogle ScholarPubMed
Hutson, N.J. & Randle, P.J. (1978). Enhanced activity of pyruvate dehydrogenase kinase in rat heart mitochondria in alloxan-diabetes or starvation. Febs Lett., 92, 7376.CrossRefGoogle ScholarPubMed
Infante, J.P. & Kinsella, J.E. (1979). Co-ordinate regulation of ethanolamine kinase and phosphoethanolamine cytidyltransferase in the biosynthesis of phos-phatidylethanolamine in rat liver. Evidence from essential fatty acid-deficient animals. Biochem. J., 179, 723725.CrossRefGoogle Scholar
Isaacson, Y.A., Deroo, P.W., Rosenthal, A.F., Bittman, R., Mcintyre, J.O., Bock, H.G., Gazzotti, P. & Fleischer, S. (1979). The structural specificity of lecithin for activation of • purified D – beta – hydroxybutyrate apodehydrogenase. J. Biol. Chem., 254, 117126.CrossRefGoogle ScholarPubMed
Kaduce, T.L., Awad, A.B., Fontenelle, L.J. & Spector, A.A. (1977). Effect of fatty acid saturation on alpha-aminoisobutyric acid transport in Ehrlich ascites cells. J. Biol. Chem., 262, 66246630.CrossRefGoogle Scholar
Lamers, J.M.J. & Hülsmann, W.C. (1974). The effects of fatty acids on oxidative decarboxylation of pyruvate in rat small intestine. Biochim. biophys. Acta, 343, 215225.CrossRefGoogle ScholarPubMed
Launay, M., Dauvillier, P. & Raulin, J. (1969). Développement du tissu adipeux. Radioactivité spécifique des acides nucléiques et rôle des acides gras polyinsaturés. Bull. Soc. Chim. biol., 51, 95104.Google Scholar
Launay, M., Lapous, D. & Raulin, J. (1981). Control of replication by dietary lipids and namely by linoleic acid in liver and adipose-tissue of developing rats. Progr. Lipid Res., 20, 331338.CrossRefGoogle ScholarPubMed
Loriette, C, Jomain-Baum, M., Macaire, I. & Raulin, J. (1971). Lipogenèse de nova et insaturation des lipides exogènes dans le tissu adipeux du rat. Eur. J. Clin. Biol. Res., 16, 366372.Google Scholar
Loriette, C. & Raulin, J. (1972). Commentaire sur l’effet régulateur de la lipogenèse par les acides gras polyinsaturés. Activité acètyl-CoA carboxylase du foie et du tissu adipeux. Biochimie, 54, 14671471.CrossRefGoogle Scholar
Loriette, C, Lapous, D. & Raulin, J. (1976). Développement foetal et néonatal du tissu adipeux brun du cobaye et du rat. Transfert foeto-placentaire ou lacté des acides gras essentiels: lipogenèse et morphologie. J. Physiol, 72, 5977.Google Scholar
Loriette, C, Launay, M. & Raulin, J. (1981). Polyunsaturated oils and pyruvate dehydrogenase activity. J. Amer. Oil Chem. Soc, 57, A 334.Google Scholar
Louis, S.L., Brivio-Haugland, R.P. & Williams, M.A. (1976). Effect of essential fatty acid deficiency on activity of liver plasma membrane enzymes in the rat. J. Supramolec, Struct., 4, 487(447)496(456).CrossRefGoogle ScholarPubMed
Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. In: Meth. Enzymol., vol 3, (Colowick, S.P. & Kaplan, N.O., eds) pp. 447454, Acad. Press, N.Y.Google Scholar
Mapes, J.P. & Harris, R.A. (1975). Regulatory function of pyruvate dehydrogenase and the mitochondrion in lipogenesis. Lipids, 10, 757764.CrossRefGoogle ScholarPubMed
Mead, J.F. (1968), The metabolism of the polyunsaturated fatty acids, in: Progr. Chem. Fats and other Lipids, vol 9, Part 2 (Holman, R.T., ed.) pp. 161194, Pergamon Press, N.Y.Google Scholar
Mohrhauer, H. & Holman, R.T. (1963). The effect of dose level of essential fatty acid upon fatty acid composition of the rat liver. J. Lipid Res., 4, 151159.CrossRefGoogle ScholarPubMed
Portenhauser, R. & Wieland, O. (1972). Regulation of pyruvate dehydrogenase in mitochondria of rat liver. Eur. J. Biochem. 31, 308314.CrossRefGoogle ScholarPubMed
Randle, P.J. (1978). Pyruvate dehydrogenase complex – meticulous regulator of glucose disposal in animals. TIBS, 3, 217219.Google Scholar
Raulin, J., Lapous, D., Dauvillier, P. & Loriette, C. (1971). Remaniements structuraux du tissu adipeux et apport excessif d’acides gras essentiels. Nutr. Metab., 13, 249265.CrossRefGoogle Scholar
Raulin, J., Loriette, C., Launay, M., Lapous, D., Goureau-Counis, M.F., Counis, R. & Carreau, J.P. (1974). The effect on regulation of adiposetissue differentiation and evolution of excessive doses of essential fatty acids, in: The Regulation of Adipose-Tissue Mass (Vague, J. & Boyer, J., eds) pp. 3234, Excerpta med., Series 315, Elsevier Publ., Amsterdam.Google Scholar
Raulin, J. & Grundt, I.K. (1980). Incorporation of l4C from carboxyl-labeled oleoyl-, linoleoyl- and arachidonoyl-CoA into water-soluble and insoluble fractions of rat liver slices. Methodology for in vitro experiments. Anal. Biochem., 101, 204214.CrossRefGoogle Scholar
Raulin, J., Launay, M., Loriette, C., Lapous, D. & Bouchène, M. (1980). Implication of essential fatty acids in pyruvate dehydrogenase activity, in: Natural Sulfur Compounds, Novel Biochemical and Structural Aspects (Cavallini, D., Gaull, G.E. & Zappia, V., eds) pp. 435442, Plenum Publ. Co., N.Y.CrossRefGoogle Scholar
Reed, L.J. (1974). Multienzyme complexes. Accounts Chem. Res., 7, 4046.CrossRefGoogle Scholar
Scholz, R., Olson, M.S., Schwab, A.J., Schwab, U., Noell, C. & Braun, W. (1978). The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver. Eur. J. Biochem., 86, 519530.CrossRefGoogle ScholarPubMed
Stansbie, D., Denton, R.M. & Randle, P.J. (1975). Alterations in adipose-tissue pyruvate dehydrogenase activity in starved, fat-fed and diabetic rats. Biochem. Soc. Trans., 3, 718720.CrossRefGoogle ScholarPubMed
Taylor, S.I., Muhkerjee, C. & Jungas, R.L. (1973). Studies on the mechanism of activation of adipose-tissue pyruvate dehydrogenase by insulin. J. Biol. Chem., 245, 7381.CrossRefGoogle Scholar
Taylor, S.I., Mukherjee, C. & Jungas, R.L. (1975). Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate oxidation reduction state, and adenosine triphosphate to adenosine diphosphate ratio. J. Biol. Chem., 250, 20282035.CrossRefGoogle ScholarPubMed
Walajtys-Rode, E.I. (1976). Studies on the influence of fatty acids on pyruvate dehydrogenase interconversion in rat-liver mitochondria. Eur. J. Biochem., 71, 229237.CrossRefGoogle ScholarPubMed
Wieland, O., Siess, E., Schulze-Wethmar, F.H., V. Funcke, H.G. & Winton, B. (1971). Active and inactive forms of pyruvate dehydrogenase in rat heart and kidney: Effect of diabetes, fasting and refeeding on pyruvate dehydrogenase interconversion. Arch. Biochem. biophvs., 143, 593601.CrossRefGoogle ScholarPubMed