Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T14:58:29.188Z Has data issue: false hasContentIssue false

A Preliminary Study of Dynamic Muscle Function in Hereditary Ataxia

Published online by Cambridge University Press:  18 September 2015

C. Richards
Affiliation:
Centre de Recherche en Neurobiologie, École de Réadaptation, Université Laval, and Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, 1401, 18e Rue, Québec
J.P. Bouchard
Affiliation:
Centre de Recherche en Neurobiologie, École de Réadaptation, Université Laval, and Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, 1401, 18e Rue, Québec
R. Bouchard
Affiliation:
Centre de Recherche en Neurobiologie, École de Réadaptation, Université Laval, and Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, 1401, 18e Rue, Québec
H. Barbeau
Affiliation:
Centre de Recherche en Neurobiologie, École de Réadaptation, Université Laval, and Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, 1401, 18e Rue, Québec
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dynamic muscle function was evaluated in nine patients with Friedreich's ataxia (FA) and eight with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The measurement of torque throughout maximum voluntary isokinetic knee movements was used to quantitatively describe muscle weakness in the ataxic patients. Both FA and ARSACS patients were shown to have decreased dynamic strength in comparison to normal values during knee extension and flexion movements at 30% /s. In the FA patients a lower torqueproducing capacity was seen in the older patients.

The electromyographic (EMG) activity was recorded in lower extremity muscles during the movements. In the vastus lateralis (VL), deviations from the normal EMG activation pattern were described in both groups of patients. A reduced amplitude in the EMG activity in the medial hamstrings (MH) was seen in the majority of the patients. An index of coactivation was defined by comparing the EMG activity when a muscle lengthened (antagonistic) to the EMG activity when the same muscle shortened (agonistic) during the isokinetic contractions. In comparison to normal values increased coactivation indexes were present in the VL and MH in patients of both groups. The characteristics of dynamic muscle strength and the activation of agonistic and antagonistic muscles described in the present study will provide the basis of evaluation for the effects of therapy in these patients.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1980

References

REFERENCES

Andermann, F. (1976) Nicolaus Friedreich and degenerative atrophy of the posterior columns of the spinal cord. Can. J. Neurol. Sci., 3, 275277.CrossRefGoogle ScholarPubMed
Barbeau, A. (1978) Emerging treatments: Replacement therapy with choline or lecithin in neurological diseases. Can. J. Neurol. Sci., 5, 157160.CrossRefGoogle ScholarPubMed
Bell, J.M. and Carmichael, E.A. (1939) On hereditary ataxia and spastic paraplegia. In: Treasury of Human Inheritance, Vol. 4, Cambridge Press, London, pp. 141284.Google Scholar
Bouchard, J.P., Barbeau, A., Bouchard, R. and Bouchard, R.W. (1978) Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Can. J. Neurol. Sci., 5, 6170.CrossRefGoogle ScholarPubMed
Bouchard, J.P., Barbeau, A., Bouchard, R., Paquet, M. and Bouchard, R.W. (1979a) A cluster of Friedreich’s ataxia in Rimouski, Québec. Can. J. Neurol. Sci., 6, 205208.CrossRefGoogle ScholarPubMed
Bouchard, J.P., Barbeau, A., Bouchard, R. and Bouchard, R.W. (1979b) Electromyography and nerve conduction studies in Friedreich’s ataxia and autosomal recessive spastic ataxia of Charle-voix-Saguenay (ARSACS). Can. J. Neurol. Sci., 6, 185189.CrossRefGoogle ScholarPubMed
Brown, J.R. (1962) Diseases of the Cerebellum. In: Clinical Neurology, Vol. 3 (Baker, Ed.), pp. 14061455.Google Scholar
Campbell, D.E. and Glenn, W. (1979) Foot-pounds of torque of the normal knee and the rehabilitated post-meniscectomy knee. Phys. Ther., 59, 418421.CrossRefGoogle Scholar
Clarke, H.H. (1948) Objective strength tests of affected muscle groups involved in orthopedic disabilities. Res. Quart., 19, 118147.Google ScholarPubMed
Coyle, E.F., Costill, D.L. and Lesmes, G.R. (1979) Leg extension-power and muscle fiber composition. Med. Sci. Sports, 2, 1215.Google Scholar
Dyck, P.J. and Lambert, E.H. (1968). Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic and electrophysiologic findings in various neuronal degenerations. Arch. Neurol., 18, 603625.CrossRefGoogle ScholarPubMed
Fugl-Meyer, A.R., Nordin, G., Sjöström, M. and Wählby, L. (1979) Achilles tendon injury. Scand. J. Rehabil. Med., 11, 3744.Google Scholar
Geoffroy, G., Barbeau, A., Breton, G., Lemieux, A., Aubé, M., Léger, C. and Bouchard, J.P. (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 279286.CrossRefGoogle ScholarPubMed
Gordon, A.M., Huxley, A.F. and Julian, F.J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (London), 184, 170192.Google Scholar
Goslin, B.R. and Charters, J. (1979) Isokinetic dynamometry: normative data for clinical use in lower extremity (knee) cases. Scand. J. Rehabil. Med., 2, 105109.Google Scholar
Grinker, R.R. and Sahs, A.L. (1966) Neurology, 6th ed., Thomas, Charles C. Springfield, III., pp. 686689.Google Scholar
Hislop, H. and Perrine, J.J. (1967) The isokinetic concept of exercise. Phys. Ther., 47, 114117.CrossRefGoogle ScholarPubMed
Knutsson, E. and Martensson, A. (1976) Action of dantrolene sodium in spasticity with low dépendance on fusimotor drive. J. Neurol. Sci., 29, 195212.CrossRefGoogle Scholar
Knutsson, E. and Richards, C. (1979) Different types of disturbed motor control in gait of hemiparetic patients. Brain, 102, 405430.CrossRefGoogle ScholarPubMed
Larsson, L., Grimby, G. and Karlsson, J. (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J. Appi. Physiol., 46, 451456.CrossRefGoogle ScholarPubMed
McLennan, D.L. (1977) Co-contraction and stretch reflexes in spasticity during treatment with baclofen. J. Neurol. Neurosurg. Psychiatry, 40, 3038.CrossRefGoogle Scholar
Mendler, H.M. (1967) Effect of stabilization on maximum isometric knee extensor force. Phys. Ther. 47, 375379.CrossRefGoogle ScholarPubMed
Moffroid, MWhipple, R., Hofkosh, J., Lowman, E. and Thistle, H. (1969) A study of isokinetic exercise. Phys. Ther., 49, 735747.CrossRefGoogle ScholarPubMed
Nicholas, J.A., Strizak, A.M. and Verras, G. (1976) A study of thigh muscle weakness in different pathological states of the lower extremity. Am. J. Sports Med. 4, 241248.CrossRefGoogle ScholarPubMed
Peyronnard, J.M., Bouchard, J.P., Lapointe, L., Lamontagne, B., Lemieux, B. and Barbeau, A. (1976) Nerve conduction studies and electromyography in Friedreich’s ataxia. Can. J. Neurol. Sci., 4, 313317.CrossRefGoogle Scholar
Peyronnard, J.M., Charron, L. and Barbeau, B. (1979) The neuropathy of Charlevoix-Saguenay ataxia: an electrophysiological and pathological study. Can. J. Neurol. Sci., 6, 205208.CrossRefGoogle ScholarPubMed
Pratt, R.T.C. (1967) The Genetics of Neurological Disorders, (Roberts, Ed.), Oxford University Press, London, pp. 3338.Google Scholar
Ralston, H.J. and Inman, V.T. (1947) Mechanics of human isolated voluntary muscle. Amer. J. Physiol., 151, 612620.CrossRefGoogle ScholarPubMed
Richards, C. (1980) Dynamic muscle function in human normal, pathological and prosthetic knee joints. Ph.D. thesis, McGill University.Google Scholar
Richards, C. (in press a) Dynamic strength characteristics during isokinetic knee movements in healthy women. Physiother. Can.Google Scholar
Richards, C. (in press a) Dynamic strength characteristics during isokinetic knee movements in healthy women. Physiother. Can.Google Scholar
Sahrmann, S.A., Norton, B.J., Bomze, H.A. and Eliasson, S.G. (1974). Influence of the site of the lesion and muscle length on spasticity in man. Phys. Ther. 54, 12901297.CrossRefGoogle Scholar
Smidt, G.L. (1973) Biochemical analysis of knee flexion and extension. J. Biomech., 6, 7992.CrossRefGoogle Scholar
Spiller, W.G. (1910) Friedreich’s Ataxia. J. Nerv. Ment. Dis., 37, 411435.CrossRefGoogle Scholar
Thistle, H., Hislop, H., Moffroid, M. and Lowman, E.W. (1967) Isokinetic contraction: a new concept of resistance exercise. Arch. Phys. Med. Rehabil., 48, 279282.Google Scholar
Thorstensson, A. (1976) Muscle strength, fibre types and enzyme activities in man. Acta Physiol. Scand., Suppl.443.CrossRefGoogle ScholarPubMed
Thorstensson, A., Grimby, G. and Karlsson, J. (1976) Force-velocity relations and fiber composition in human knee extensor muscles. J. Appi. Physiol., 40, 1216.CrossRefGoogle ScholarPubMed
Tyrer, J.H. (1975) Friedreich’s ataxia. In: Handbook of Neurology, Vol. 21 (Vinken, and Bruyn, , Eds.), pp. 319364.Google Scholar
Tyrer, J.H. and Sutherland, J.M. (1961) The primary spinocerebellar atrophies and their associated defects, with a study of the foot deformity. Brain, 84, 289300.CrossRefGoogle ScholarPubMed
Williams, M. and Stutzman, L. (1959) Strength variation through the range of joint notion. Phys. Ther., 39, 145152.CrossRefGoogle Scholar
Wilson, S.A.K. (1954) Friedreich’s disease. In: Handbook of Neurology, Vol. 2 (Bruce, Ed.), pp. 10781091.Google Scholar