Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T20:34:23.090Z Has data issue: false hasContentIssue false

Postirradiated and Nonirradiated Gliosarcoma: Immunophenotypical Profile

Published online by Cambridge University Press:  18 September 2015

Lee C. Ang*
Affiliation:
Division of Pathology, St. Michael’s Hospital, Toronto
James R. Perry
Affiliation:
Division of Neurology, Sunnybrook Health Science Centre, University of Toronto, Toronto
Juan M. Bilbao
Affiliation:
Department of Pathology, University of Toronto, Toronto
Wayne Ozane
Affiliation:
Department of Pathology, University of Toronto, Toronto
Eva Peschke
Affiliation:
Division of Pathology, St. Michael’s Hospital, Toronto
Beverley Young
Affiliation:
Division of Pathology, St. Michael’s Hospital, Toronto
Nahid Nelson
Affiliation:
Department of Pathology, University of Toronto, Toronto
*
Pathology, E419, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, North York, Ontario, Canada M4N 3M5
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Background: Thirty-one gliosarcomas (25 nonirradiated and 6 postirradiated tumors) were selected based on the presence of two distinctive areas: a malignant gliomatous and a sarcomatous component. In all cases, the sarcomatous component appears like fibrosarcoma or malignant fibrous histiocytoma. Two tumors showed additional areas consisting of osteochondroid differentiation. Methods: All tumors were examined using antibodies against Ulex europaeus agglutinin I (UEA), glial fibrillary acidic protein (GFAP), vimentin (VM), epithelial membrane antigen (EMA), desmin, collagen IV, alpha-1-antitrypsin (a-l-AT) and smooth muscle actin (SMA). Results: While the VM highlighted the sarcomatous areas of all tumors there were only scattered spindle cells that were GFAP-positive in the same areas. The a-l-AT was diffusely reactive in the sarcomatous areas in 20 cases. Focal immunoreactivity was seen with SMA (20 tumors), UEA (8 tumors), EMA (5 tumors), collagen IV (5 tumors) and desmin (4 tumors) in the nonvascular sarcomatous cells. Conclusions: The range of immunophenotypical expression is likely to be a reflection of the capacity of a multipotential progenitor to undergo divergent differentiation. There is very little morphological difference between the postirradiated and nonirradiated tumors except that a higher proportion of postirradiated tumors are immunoreactive to SMA and desmin.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1996

References

1.Feigin, IH, Gross, SW.Sarcoma arising in glioblastoma of the brain. Am J Pathol 1955; 31: 633653.Google ScholarPubMed
2.Morantz, RA, Feigin, I, Ransohoff, J, III. Clinical and pathological study of 24 cases of gliosarcoma. J Neurosurg 1976; 45: 398408.CrossRefGoogle Scholar
3.Meis, JM, Martz, KL, Nelson, JS.Mixed gliobastoma multiforme and sarcoma. Cancer 1991; 67: 23422349.3.0.CO;2-B>CrossRefGoogle Scholar
4.Rubinstein, LJ.The development of continuous sarcomatous and gliomatous tissue in intracranial tumour. J Pathol Bact 1956; 71: 441459.CrossRefGoogle Scholar
5.Lalitha, VS, Rubinstein, LJ.Reactive glioma in intracranial sarcoma: a form of mixed sarcoma and glioma (“sarcoglioma”) Report of eight cases. Cancer 1979; 43: 246257.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
6.Hsu, S-M, Raine, L and Fanger, H.Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase technique: a comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 1981; 29: 577580.CrossRefGoogle ScholarPubMed
7.Grant, JW, Steart, PV, Aguzzi, A, Jones, DB, Gallagher, PJ.Gliosarcoma: an immunohistochemical study. Acta Neuropathol 1989; 79: 305309.CrossRefGoogle ScholarPubMed
8.Meis, JM, Ho, K-L, Nelson, JS.Gliosarcoma. A histologic and immunohistochemical reaffirmation. Modern Pathol 1990; 1: 1924.Google Scholar
9.Jones, H, Steart, PV, Weller, RO.Spindle-cell glioblastoma or gliosarcoma? Neuropathol Appl Neurobiol 1991; 17: 177187.CrossRefGoogle ScholarPubMed
10.Paulus, W, Jellinger, K.Desmoplastic spindle-cell glioblastoma or gliosarcoma? Neuropathol Appl Neurobiol 1992; 18: 207208.Google ScholarPubMed
11.Leader, M, Patel, J, Collins, M, Henry, K.Anti-alpha- l-antichymotrypsin staining of 194 sarcomas, 38 carcinomas and 17 malignant melanomas. Its lack of specificity as a tumour marker. Am J Surg Pathol 1987; 11: 133139.CrossRefGoogle Scholar
12.Ho, K-L: Histogenesis of sarcomatous component of the gliosarcoma. An ultrastructural study. Acta Neuropathol 1990; 81: 178188.CrossRefGoogle ScholarPubMed
13.Kochi, N, Budka, H.Contribution of histiocytic cells to sarcomatous development of the gliosarcoma. Acta Neuropathol 1987; 73: 124130.CrossRefGoogle ScholarPubMed
14.Slowik, F, Jellinger, K, Gaszó, L, Fischer, J.Gliosarcomas: histochemical, ultrastructural, and tissue culture studies. Acta Neuropathol (Berl) 1985; 67: 201210.CrossRefGoogle Scholar
15.Cerda-Nicolas, M, Kepes, JJ.Gliofibromas (including malignant forms), and gliosarcomas: a comparative study and review of the literature. Acta Neuropathol 1993; 85: 349361.CrossRefGoogle ScholarPubMed
16.Haddad, SF, Moore, SA, Schelper, RL, Goeken, JA.Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures of glioblastoma multiforme. J Neuropathol Exp Neurol 1992; 51, 5: 488492.CrossRefGoogle ScholarPubMed
17.Haddad, SF, Moore, SA, Schelper, RL, Goeken, JA.Smooth muscle can comprise the sarcomatous component of gliosarcomas. J Neuropathol Exp Neurol 1992; 51, 5: 493498.CrossRefGoogle ScholarPubMed
18.Betsholtz, C, Heldin, CH, Nister, M, et al. Synthesis of a PDGF-like growth factor in human glioma and sarcoma cells suggests the expression of the cellular homologue to the transforming protein of simian sarcoma virus. Biochem Biophys Res Commun 1983; 117: 176182.CrossRefGoogle Scholar
19.Hermansson, M, Nister, M, Betsholtz, C, et al. Endothelial cell hyperplasia in human glioblastoma. Coexpression of mRNA for platelet-derived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Proc Natl Acad Sci USA 1988; 85: 77487752.CrossRefGoogle ScholarPubMed
20.Ikeda, U, Ikeda, M, Oohara, T, Kano, S, Yaginuma, T.Mitogenic action of interleukin-1A on vascular smooth muscle cells mediated by PDGF. Atherosclerosis 1990; 84: 183.CrossRefGoogle Scholar
21.Paulus, W, Grothe, C, Sensenbrenner, M, et al. Localization of basic fibroblast growth factor, a mitogen and angiogenic factor, in human brain tumours. Acta Neuropathol 1990; 79: 418423.CrossRefGoogle Scholar
22.Mansson, PE, Malark, M, Sawada, H, Kan, M, McKeehan, WL.Heparin-binding (fibroblast) growth factors type one and two are co-expressed in proliferating normal human vascular endothelial and smooth muscle cells in culture. In: Vitro Cell Dev Biol 1990; 26: 209212.CrossRefGoogle ScholarPubMed
23.Antoniades, HN.Platelet-derived growth factor and malignant transformation. Biochem Pharmacol 1984; 33: 28232828.CrossRefGoogle ScholarPubMed
24.Albrecht, S, Conelly, JH, Bruner, JM.Distribution of p53 protein expression in gliosarcoma: an immunohistochemistry study. Acta Neuropathol 1993; 85: 222226.CrossRefGoogle Scholar
25.Biernat, W, Aguzzi, A, Sure, U, et al. Identical mutations of the p53 tumour suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J Neuropathol Exp Neurol 1995; 54: 651656.CrossRefGoogle ScholarPubMed
26.Barnard, RO, Bradford, R, Scott, T, Thomas, DGT.Gliomyosarcoma: report of a case of rhabdomyosarcoma arising in a malignant glioma. Acta Neuropathol (Berl) 1986; 69: 2327.CrossRefGoogle Scholar
27.Engzinger, M, Sharon, W.Soft Tissue Tumour, 3rd Edition, 889928, Mosby, St. Louis, Mo., 1995.Google Scholar
28.Smith, TW, Davidson, RI.Medullomyoblastoma: a histologic, immunohistochemical and ultrastructural study. Cancer 1984; 54: 323332.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
29.Auer, RN, Becker, LE.Cerebral medulloepithelioma with bone, cartilage and striated muscle. Light-microscopic and immunohistochemical study. J Neuropathol Exp Neurol 1983; 42: 256267.CrossRefGoogle ScholarPubMed
30.Hayashi, K, Ohara, N, Jeon, HJ, et al. Gliosarcoma with features of chondroblastic osteosarcoma. Cancer 1993; 72: 850853.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
31.Sarmiento, J, Ferrer, I, Pons, L, Ferrer, E.Cerebral mixed tumour: osteo-condrosarcoma – glioblastoma multiforme. Report of one case. Acta Neurochir 1979; 50: 335341.CrossRefGoogle Scholar
32.Tada, T, Katsuyama, T, Aoki, T, Kobayashi, S, Shigematsu, H.Mixed glioblastoma and sarcoma with osteoid-chondral tissue. Clin Neuropathol 1987; 6: 160163.Google ScholarPubMed
33.Louis, DN, Hedley-Whyte, ET, Martuza, RL.Sarcomatous proliferation of the vasculature in a subependymoma: a follow-up study of sarcomatous dedifferentiation. Acta Neuropathol 1990; 80: 573574.CrossRefGoogle Scholar
34.Averback, P.Mixed intracranial sarcomas. Rare forms and a new association with previous radiation therapy. Ann Neurol 1978; 4: 229233.CrossRefGoogle Scholar
35.Noetzli, M, Malamud, N.Postirradiation fibrosarcoma of the brain. Cancer 1962; 15: 617622.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
36.Bernstein, M, Perrin, RG, Platts, ME, Simpson, WJ.Radiation-induced cerebellar chondrosarcoma: case report. J Neurosurg 1984; 61: 174177.CrossRefGoogle ScholarPubMed
37.Gonzalez-Vitale, JC, Slavin, RE, McQueen, JD.Radiation-induced intracranial malignant fibrous histiocytoma. Cancer 1976; 37: 29602963.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
38.Schrantz, JL, Araoz, CA.Radiation induced meningeal fibrosarcoma. Arch Pathol 1972; 93: 2631.Google ScholarPubMed
39.Waltz, TA, Brownell, B.Sarcoma: a possible late result of effective radiation therapy for pituitary adenoma; report of two cases. J Neurosurg 1966; 24: 901907.CrossRefGoogle ScholarPubMed
40.Perry, JR, Ang, LC, Bilbao, JM, Muller, PJ.Clinicopathologic features of primary and postirradiation cerebral gliosarcoma. Cancer 1995; 75: 29102918.3.0.CO;2-A>CrossRefGoogle ScholarPubMed