Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:47:23.970Z Has data issue: false hasContentIssue false

The Pentapeptide QYNAD Does Not Inhibit Neuronal Network Activity

Published online by Cambridge University Press:  02 December 2014

F. Otto
Affiliation:
Department of Neurology, Heinrich-Heine-University Düsseldorf, Germany
B.C. Kieseier
Affiliation:
Department of Neurology, Heinrich-Heine-University Düsseldorf, Germany
P. Görtz
Affiliation:
Department of Neurology, Heinrich-Heine-University Düsseldorf, Germany
H.-P. Hartung
Affiliation:
Department of Neurology, Heinrich-Heine-University Düsseldorf, Germany
M. Siebler*
Affiliation:
Department of Neurology, Heinrich-Heine-University Düsseldorf, Germany
*
Department of Neurology, Heinrich-Heine-University, Morrenstr. 5, 40225 Düsseldorf, Germany
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Controversial data was published about the sodium channel-blocking effect of the endogenous pentapeptide QYNAD, which is elevated in patients with multiple sclerosis and Guillain-Barré-syndrome. In some experiments with single cells and nerve preparations QYNAD inhibited sodium currents to the same extent as the known sodium channel blocker lidocaine whereas in other laboratory testing QYNAD failed to show any effect at all.

Methods:

Micro-electrode arrays with cultured neuronal networks are highly suitable to determine neuroactive activity of applied substances. The impact on electrophysiological parameter changes was compared between QYNAD and the established sodium channel blockers lidocaine and tetrodotoxin (TTX).

Results:

QYNAD did not alter network activity whereas the sodium channel blockers lidocaine (IC50 14.9 µM) and tetrodotoxin (IC50 1.1 nM) reversibly decreased network activity in similar concentrations as in patch-clamp experiments. This decrease of spontaneous electrophysiological activity was achieved by prolonging the interburst-interval.

Conclusion:

Although QYNAD might have mild effects on single-cell sodium currents, there is no significant effect on neuronal network function. These results raise concerns about QYNAD exhibiting a relevant impact on functional disability of the central nervous system in patients.

Résumé:

RÉSUMÉ: Introduction:

Les données publiées sur le blocage des canaux sodiques par le pentapeptide QYNAD, un peptide endogène, sont controversées. Le taux de ce pentapeptide est élevé chez les patients atteints de sclérose en plaques et dans le syndrome de Guillain-Barré. Dans certaines expériences sur des préparations de cellules et de nerfs isolés, le QYNAD inhibe les courants sodiques de façon aussi importante que la lidocaïne, un inhibiteur des canaux sodiques, alors que dans d’autres expériences, il n’a aucun effet.

Méthodes:

Les matrices d’électrodes sont très appropriées pour déterminer la neuroactivité de substances appliquées à des réseaux neuronaux en culture. Nous avons comparé l’impact du QYNAD et de la lidocaïne, un bloquant des canaux sodiques bien connu, et de la tétrodotoxine (TTX) sur les changements de paramètres électrophysiologiques.

Résultats:

Le QYNAD ne modifiait pas l’activité du réseau neuronal alors que la lidocaine, un bloquant des canaux sodiques (IC50 de 14,9 mmol) et la TTX (IC50 de 1,1 nmol) diminuaient de façon réversible l’activité du réseau neuronal à des concentrations semblables à celles utilisées dans les techniques « patch-clamp ». Cette diminution de l’activité électrophysiologique spontanée était obtenue en prolongeant l’intervalle entre les décharges.

Conclusion:

Bien que le QYNAD puisse avoir de légers effets sur les courants sodiques dans un système unicellulaire, il n’a pas d’effet significatif sur la fonction d’un réseau neuronal. Ces résultats soulèvent des doutes quant à l’impact du QYNAD sur l’invalidité fonctionnelle du système nerveux central chez des patients.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Hemmer, B, Archelos, JJ, Hartung, HP. New concepts in the immunopathogenesis of multiple sclerosis. Nature Rev Neurosci 2002;3:291301.Google Scholar
2. Alcazar, A, Regidor, I, Masjuan, J, Salinas, M, Alvarez-Cermeno, JC. Axonal damage induced by cerebrospinal fluid from patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2000;104(1):5867.Google Scholar
3. Brinkmeier, H, Wollinsky, KH, Seewald, MJ, et al. Factors in the cerebrospinal fluid of multiple sclerosis patients interfering with voltage-dependent sodium channels. Neurosci Lett 1993;156:172175.CrossRefGoogle ScholarPubMed
4. Köller, H, Buchholz, J, Siebler, M. Cerebrospinal fluid from multiple sclerosis patients inactivates neuronal Na+ current. Brain 1996;119:457463.Google Scholar
5. Kieseier, BC, Kiefer, R, Gold, R, et al. Advances in immune-mediated disorders of the peripheral nervous system. Muscle Nerve 2004 (in press).Google Scholar
6. Brinkmeier, H, Aulkemeyer, P, Wollinsky, KH, Rüdel, R. An endogenous pentapeptide acting as a sodium channel blocker in inflammatory autoimmune disorders of the central nervous system. Nat Med 2000;6(7):808811.Google Scholar
7. Meuth, SG, Budde, T, Duyar, H, et al. Modulation of neuronal activity by the endogenous pentapeptide QYNAD. Eur J Neurosci 2003;18:110.Google Scholar
8. Cummins, TR, Renganathan, M, Stys, PK, et al. The pentapeptide QYNAD does not block voltage-gated sodium channels. Neurology 2003;60(2):224229.CrossRefGoogle Scholar
9. Quasthoff, S, Pojer, C, Mori, A, et al. No blocking effect of the pentapeptide QYNAD on Na+ channel subtypes expressed in Xenopus oocytes or action potential conduction in isolated rat sural nerve. Neurosci Lett 2003;352(2):9396.CrossRefGoogle ScholarPubMed
10. Gross, GW, Rhoades, BK, Azzazy, HM, Wu, MC. The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron 1995;10:553567.CrossRefGoogle ScholarPubMed
11. Otto, F, Görtz, P, Fleischer, W, Siebler, M. Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays. J Neurosci Methods 2003;128:173181.Google Scholar
12. Brinkmeier, H, Aulkemeyer, P, Bechter, K, Wollinsky, KH, Rüdel, R. Concentration of the Na+ channel blocker QYNAD determined in CSF and serum of GBS patients using ion trap mass spectroscopy. Pflügers Arch 2002;443(19):S367.Google Scholar
13. Aulkemeyer, P, Rüdel, R, Tumani, H, Brinkmeier, H. Ion trap mass spectroscopy shows that the Na+ channel blocker QYNAD exists in the CSF of MS patients but is absent in the CSF of ALS patients. Pflügers Arch 2002;443(19):S190.Google Scholar
14. Padmashri, R, Chakrabarti, KS, Sahal, D, et al. Functional characterization of the pentapeptide QYNAD on rNAv1.2 channels and its NMR structure. Pflügers Arch 2004;447:895907.Google Scholar
15. Shah, BS, Stevens, EB, Pinnock, RD, Dixon, AK, Lee, K. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit b3, in rat CNS. J Physiol 2001;534:763776.Google Scholar
16. Tumani, H, Aulkemeyer, P, Süssmuth, S, Rüdel, R, Brinkmeier, H. Das endogene Na-Kanal-blockierende Pentapeptid Gln-Tyr-Asn-Ala-Asp (QYNAD) bei multipler Sklerose: Erhöhte Liquorkonzentration korreliert nicht mit klinischer Beeinträchtigung oder MRT-Läsionen. Akt. Neurol 2001;28:S87.Google Scholar